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Abstract:  11 
Species interactions drive evolution while evolution shapes these interactions. The resulting eco-12 
evolutionary dynamics, their outcomes and their repeatability depend on how adaptive mutations 13 
available to community members affect fitness and ecologically relevant traits. However, the 14 
diversity of adaptive mutations is not well characterized, and we do not know how this diversity 15 
is affected by the ecological milieu. Here we use barcode lineage tracking to address this gap in a 16 
competitive mutualism between the yeast Saccharomyces cerevisiae and the alga 17 
Chlamydomonas reinhardtii. We find that yeast has access to many adaptive mutations with 18 
diverse ecological consequences, in particular, those that increase and reduce the yields of both 19 
species. The presence of the alga does not change which mutations are adaptive in yeast (i.e., 20 
there is no fitness trade-off for yeast between growing alone or with alga), but rather shifts 21 
selection to favor yeast mutants that increase the yields of both species and make the mutualism 22 
stronger. Thus, in the presence of the alga, adaptations contending for fixation in yeast are more 23 
likely to enhance the mutualism, even though cooperativity is not directly favored by natural 24 
selection in our system. Our results demonstrate that ecological interactions not only alter the 25 
trajectory of evolution but also dictate its repeatability; in particular, weak mutualisms can 26 
repeatably evolve to become stronger. 27 
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Introduction 29 

Ecological communities are often perturbed by environmental shifts1,2, demographic noise3 and 30 
species turnover4,5. Such perturbations can not only displace communities from their ecological 31 
equilibria but also precipitate adaptive evolution6–9. Evolutionary changes within one species can 32 
be rapid and can alter its ecological interactions with other community members, which can 33 
cause further evolution8–10. Although such eco-evolutionary feedbacks appear to be 34 
widespread7,9–25, the population genetic mechanisms that underlie them are not well 35 
understood26. For example, how does the spectrum of adaptive mutations available to a species 36 
(i.e. the genomic locations and fitness effects of mutations that provide fitness benefits) depend 37 
on the composition of the surrounding community? In particular, how does it change when a 38 
species is lost from the community or a new species invades it? How many and which of the 39 
adaptive mutations available to a species affect its interactions with the rest of the community? 40 
Which of these mutations are likely to spread and fix? And thus, how diverse and repeatable are 41 
the ecological outcomes of evolution? 42 

Empirical data supporting answers to these questions would help us develop a better theoretical 43 
understanding of eco-evolutionary dynamics. For example, many existing models assume that 44 
any combination of traits can be produced by mutations so that the eco-evolutionary trajectories 45 
and outcome are determined exclusively by natural selection27. However, recent evidence 46 
suggests that the availability of mutations can significantly impact evolution28–32. Yet, we know 47 
very little about the distributions of ecological and fitness effects of new mutations in multi-48 
species communities and how these distributions shift when the ecological milieu changes—for 49 
example, due to the addition or extinction of community members. 50 

Here, we address this gap in one of the simplest experimentally tractable microbial communities. 51 
Our community consists of two species, the alga Chlamydomonas reinhardtii and the yeast 52 
Saccharomyces cerevisiae, that interact in our environment via competition and mutualism33. 53 
Although communities in nature often contain more members, understanding eco-evolutionary 54 
dynamics in simple model communities is helpful for developing an intuition and expectations 55 
for the behaviors of more complex ecosystems34–36. We measure how adaptive mutations arising 56 
in one member of our community, the yeast, affect its competitive fitness (a metric that 57 
determines the evolutionary success of a mutant lineage), the absolute abundances of both 58 
species in the community (a metric that informs us about the type of interactions between species 59 
and the stability of the community) as well as basic life-history traits of yeast (growth rates and 60 
carrying capacities) that contribute to both fitness and abundances. We specifically ask whether 61 
and how the statistical distribution of effects of adaptive mutations in yeast are altered by the 62 
presence/absence of the alga. To this end, we use the barcode lineage tracking (BLT) 63 
technology37,38 to isolate hundreds of adaptive mutations arising in yeast when it evolves alone or 64 
in community with the alga. Our data offer us a detailed view on how inter-species interactions 65 
affect the evolutionary dynamics of new mutations, and how these mutations in turn alter the 66 
ecology of our community. 67 
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Results 68 

Yeast and alga form a facultative competitive mutualism 69 

In a previous study, Hom and Murray showed that in a sealed environment in which nitrite is 70 
provided as a sole source of nitrogen and glucose is provided as a sole source of organic carbon, 71 
the yeast Saccharomyces cerevisiae and the alga Chlamydomonas reinhardtii spontaneously 72 
form an obligate mutualism33. Under such conditions, C. reinhardtii consumes nitrite and 73 
produces ammonium that is secreted and utilized by S. cerevisiae, which consumes glucose and 74 
produces CO2 that is in turn utilized by the alga. When the environment is opened to ambient gas 75 
exchange and ammonium is supplied in the medium, both the yeast and the alga can survive 76 
without each other. In this study, we grow the yeast and the alga alone and together over multiple 77 
5-day growth and dilution cycles in well-mixed and well-lit conditions, open to gas exchange, in 78 
a medium supplemented with 0.5 mM of ammonium (see Methods for details). 79 

Time-course cell-density measurements of the wild-type yeast and alga over a single cycle 80 
confirm that both species grow significantly differently in each other’s presence than alone 81 
(Figure 1, Extended Data Figure 1, Data S1, repeated-measures ANOVA P = 10–4 for the yeast 82 
and P = 5×10–8 for the alga), indicating that they ecologically interact in our experimental 83 
environment. Specifically, the alga achieves higher densities over the entire growth cycle in the 84 
community compared to growth alone. The presence of the alga alters yeast growth dynamics in 85 
a more complex way. When yeast grows alone, it reaches peak cell density at 48 hours, after 86 
which point its density gradually declines (Figure 1A), suggesting that it exhausts the initial 87 
supply of ammonium after about 48 hours. When yeast grows in community with the alga, the 88 
two species initially compete, likely for ammonium. This can be seen by a reduction of the peak 89 
yeast cell density at 48 hours (Figure 1A). Upon the depletion of supplemented ammonium, the 90 
alga subsequently reduces nitrite to ammonium that it then secretes33. This nitrogen provisioning 91 
by the alga reduces the yeast’s rate of population decline between days 3 and 4 (t-test P = 5×10–92 
4, Extended Data Figure 1, Table S1). As a result, yeast reaches approximately the same density 93 
by the end of the cycle in the community as it does alone, despite having a lower peak density on 94 
day 2. Thus, in the latter portion of the growth cycle, the yeast experiences a benefit from its 95 
interaction with the alga. Since yeast and alga initially compete and later cooperate in our 96 
conditions, we refer to our system as a competitive mutualism39. 97 

Although the ecological interactions in our system are quite complex, it would be convenient to 98 
quantify them with some simple summary statistics. We can do so, for example, by comparing 99 
the final densities that each species achieves at the end of the 5-day cycle when growing in 100 
community versus alone (Figure 1). We refer to these final densities as “yields”. Specifically, we 101 
compute the ratio of yeast yield in community (YYC) to its yield alone (YYA) and the ratio of 102 
alga yield in community (AYC) to its yield alone (AYA). Both ratios exceeding unity indicate 103 
that cooperation is on the whole more important than competition. Conversely, when both ratios 104 
are less than one, competition is more important on the whole than cooperation. For our wildtype 105 
community, we find that YYC to YYA ratio is not significantly different from one, while the 106 
AYC to AYA ratio equals 3.00 (95% Confidence Interval (CI) [2.64, 3.36], Student’s t-test t = 107 
13.24, df=7.12, P = 3×10–6; Figure 1). This indicates that, on the whole, the alga benefits from its 108 
interactions with the yeast, while the yeast, on the whole, neither benefits nor suffers from its 109 
interactions with the alga. Thus, according to this metric, yeast and alga form a net commensal 110 
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relationship. However, we emphasize that this net commensalism is a result of a balance between 111 
the underlying competitive and cooperative interactions. 112 

The fact that the yeast and the alga can grow in our conditions either alone or together as a 113 
community allows us to inquire how evolution of one species is affected by its ecological 114 
interactions with the other, under otherwise identical environmental conditions. We focus on the 115 
initial phase of adaptive evolution. Since the yeast is likely to adapt faster than the alga (see 116 
Supplementary Information), we characterize the distribution of ecological and fitness effects of 117 
adaptive mutations arising in yeast and examine how these distributions depend on the 118 
presence/absence of the alga. 119 

The presence of the alga alters the fitness effects of beneficial 120 
mutations in yeast without apparent trade-offs 121 

We first asked whether and how ecological interactions with the alga change the distribution of 122 
fitness effects of adaptive mutations arising in yeast. To this end, we carried out five replicate 123 
BLT experiments in yeast evolving alone (the “A-condition”) and in a community with the alga 124 
(the “C-condition”; Methods). In each population, we tracked the frequencies of ~5×105 neutral 125 
DNA barcodes integrated into the yeast genome40 for 17 growth and dilution cycles. We 126 
identified on average 2,820 and 2,905 adapted barcode lineages per culture in A- and C-127 
conditions, respectively (Methods; Extended Data Figures 2, 3, Figures S1–S8). The similarity of 128 
these numbers suggests that the presence of the alga does not dramatically change the rate at 129 
which beneficial mutations arise in yeast. 130 

Each adapted lineage is expected to initially carry a single beneficial driver mutation37,38. Thus, 131 
by tracking barcode frequencies, we can estimate the competitive fitness benefits of many 132 
simultaneously segregating driver mutations relative to the ancestral yeast strain (Methods). The 133 
estimated distributions of fitness effects of beneficial mutations (bDFEs) are much broader than 134 
expected from measurement noise alone in both A- and C-conditions (Supplementary 135 
Information), indicating that yeast has access to multiple mutations with different fitness 136 
benefits, consistent with previous work37,41. The bDFEs in A- and C-conditions are different in 137 
both median effect and breadth (Figure 2A, S6 and S7). Specifically, the presence of the alga 138 
reduced the bDFE median (1.60 in A vs. 1.50 in C; P < 10–4, two-sided permutation test, see 139 
Methods) and increased its width (interquartile range (IQR) = 0.31 in A vs. IQR = 0.37 in C; P < 140 
10–4, two-sided permutation test). This increase in width is associated with the appearance of two 141 
peaks with higher relative fitness values around 2.0 and 2.5 (Figures 2A and S6). Since the 142 
dynamics of adaptation depend on the shape of the bDFE42,43, these results indicate that the 143 
presence of the alga alters evolutionary dynamics in the yeast population. 144 

The presence of the alga can alter the yeast bDFE by changing which mutations are beneficial 145 
(i.e., by imposing a fitness trade-off relative to the A-condition) or by changing the fitness 146 
benefits provided by adaptive mutations, or both. To discriminate between these possibilities, we 147 
randomly sampled 221 yeast clones from distinct adapted lineages in the A-condition (“A-148 
mutants”) and 189 yeast clones from distinct adapted lineages in the C-condition (“C-mutants”). 149 
Clones were sampled at cycle nine, a time point at which most adapted lineages are expected to 150 
still be driven by a single beneficial mutation (Methods). We then used competition assays to 151 
measure the fitness of all A- and C-mutants relative to their ancestor in both A- and C-conditions 152 
(Methods; Figures S9–S11; Data S2). These direct measurements of competitive fitness are 153 
concordant with our estimates from the BLT experiment (see Supplementary Information; Figure 154 
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S12). We found that the C-mutants had significantly higher fitness in their “home” C-condition 155 
than A-mutants, by on average 10.8% (95% CI [7.7%, 14.0%], P = 2×10–11, ANOVA model: 156 
fitness ~ environment , F = 45.83, df = 1) and that A-mutants were more fit in their home A-157 
condition than C-mutants by on average 14.4% (95% CI [10.2%, 18.5%], P = 2×10–11; F = 158 
45.42, df = 1), consistent with a signature of local adaptation. However, the fitness distributions 159 
of both A- and C-mutants are wide and overlapping in both conditions, so that some A-mutants 160 
are more fit than some C-mutants in the C-condition and vice versa. 161 
Interactions with the alga significantly alter the fitness of 88% (362/410) of all sampled mutants 162 
(false discovery rate (FDR) = 11%, obtained by permutation). However, fitness is positively 163 
correlated between the two conditions across all mutants (Figure 2B; Pearson R = 0.70, 95% CI 164 
[0.65, 0.75], two-sided P = 10–63, t = 19.9, df = 408). Importantly, none of the A- or C-mutations 165 
are deleterious in their “non-home” condition. Thus, the presence of the alga changes the fitness 166 
benefits provided by adaptive mutations in yeast but does not impose a measurable fitness trade-167 
off, in the sense that it does not alter which mutations are beneficial. 168 

The presence of the alga alters the distribution of mutations 169 
contending for fixation in yeast 170 

Given that all sampled yeast mutants are beneficial both in the presence and in the absence of the 171 
alga and that mutant fitness is correlated between the two conditions, we expected that the sets of 172 
A- and C-mutants would be genetically indistinguishable. To test this expectation, we sequenced 173 
the genomes of 181 out of 189 C-mutants, 215 out of 221 A-mutants, as well as 24 ancestral 174 
isolates as controls (Methods; Figures S13–S16; Data S3). We found 176 large copy-number 175 
variants (CNVs) across 14 loci in the genomes of A- and C-mutants and none in the ancestral 176 
isolates. All of these large CNVs are thus likely adaptive (see Supplementary Information for an 177 
extended discussion), with a typical A- and C-mutant carrying on average 0.39 ± 0.04 and 0.51 ± 178 
0.04 of these mutations, respectively. 85/176 large CNVs are whole-chromosome aneuploidies. 179 
Out of 91 remaining ones, 64 are partial losses on Chr IV, with breakpoints concordant with 180 
known LTR elements (Data S3). This large number of aneuploidies is consistent with the fact 181 
that they occur in S. cerevisiae at a rate of about 10–4 per diploid genome per generation44 and 182 
the fact that they can be adaptive in some conditions45–47. 183 
In addition to large CNVs, we discovered 185 small indels and point mutations at 63 loci for 184 
which mutations are found in A- and C-mutants significantly more often than expected by 185 
chance (see Methods and Supplementary Information), suggesting that these small mutations are 186 
also adaptive. A typical A- and C-mutant carries on average 0.35 ± 0.03 and 0.60 ± 0.06 of these 187 
small adaptive mutations, respectively. Overall, we identified 361 beneficial mutations across 77 188 
loci in 250 out of 396 adapted mutants, with each A- and C-mutant carrying on average 0.74 ± 189 
0.04 and 1.11 ± 0.07 such mutations, respectively (Table S2, Data S3). 190 

We quantified the diversity of adaptive mutations carried by A- and C-mutants with the 191 
probability of genetic parallelism, Pg, which is the probability that two random clones share a 192 
mutation at the same driver locus (lower Pg values imply higher diversity). We found that Pg is 193 
slightly higher among A-mutants than among C-mutants (Pg = 6.0 ± 0.6% and 8.5 ± 0.8%, 194 
respectively), although this difference was not statistically significant (P = 0.06, two-sided 195 
permutation test; see Methods). Nevertheless, there were large differences in the frequency 196 
distribution of driver mutations among A- and C-mutants (Figures 2C and Extended Data Figure 197 
4, Data S4; P = 5×10–8, two-sided χ2-test, χ2 = 160.51, df = 76), suggesting that the chance for 198 
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any given beneficial mutation to rise to a high enough frequency and be sampled varied 199 
dramatically between A- and C-conditions. The starkest difference was observed for the 200 
amplification of chromosome XIV (mutation chrXIV-3n): 10% (18/181) of C-mutants carried it 201 
but none of the 215 A-mutants did (Figures 2C and Extended Data Figure 4), despite chrXIV-3n 202 
mutations being beneficial in both conditions (Figure 2A and B). 203 
This initially puzzling observation could be explained by the dynamics of adaptation in 204 
populations evolving in the clonal interference regime42,48,49. Clonal interference prevents weak 205 
and/or rare beneficial mutations from reaching even moderately high frequencies32,42,50,51. Thus, 206 
the same beneficial mutation can have dramatically different chances of being sampled in the 207 
two conditions if it is located in different parts of the respective bDFEs. Consistent with this 208 
explanation, we find that a typical chrXIV-3n mutant is 2.05 ± 0.04 times more fit per cycle than 209 
the ancestral wild-type and ranks in the top 11 ± 1.3% of most fit mutants in the C-condition, 210 
while being only 1.59 ± 0.03 times more fit than the ancestor and ranking at 53 ± 5.3% in the A-211 
condition (Figure 2A). Other mutations with strong discrepancies in their representation among 212 
A- and C-mutants show similar shifts in their fitness effects and rank order (Figure 2A, Data S4). 213 
In general, interactions with the alga shifted the fitness ranks of mutants between conditions by 214 
14.1 ± 0.8% on average. We used simulations to confirm that such differences in fitness effect 215 
and rank are sufficient to explain the observed genetic differences between A- and C-mutants 216 
(see Supplementary Information, Extended Data Figure 5). 217 
The fact that the sets of A- and C-mutants are genetically different implies that the yeast 218 
populations in these two conditions are about to embark on distinct evolutionary trajectories. 219 
Indeed, A- and C-mutants primarily represent high-frequency lineages in the respective 220 
populations. Therefore, the mutations that they carry are more likely to win the clonal 221 
competition towards fixation in the condition from which they were sampled. Then, the fact that 222 
A- and C-mutants carry statistically distinct sets of mutations implies that mutations contending 223 
for fixation in yeast in the A- versus C-conditions are also different. In other words, by altering 224 
the fitness benefits of mutations, the ecological interactions with the alga change the 225 
evolutionary trajectory of yeast, at least over the short-term. 226 

Adaptive mutations in yeast have diverse ecological 227 
consequences for the community 228 

A mutation that spreads and fixes in the yeast population could subsequently alter the ecological 229 
dynamics of the yeast-alga community; and adaptive mutations at different loci may have 230 
different ecological consequences. For example, some mutations could increase yeast’s 231 
competitive ability and ultimately lead to the exclusion of the alga from the community. Others 232 
could increase yeast’s cooperativity and thereby strengthen the mutualism. To assess the 233 
prevalence and the magnitude of different ecological effects of adaptive mutations in yeast, we 234 
selected 28 C-mutants and 31 A-mutants that are representative of the genetic diversity of 235 
contending mutations (Methods). We formed 59 “mutant communities” by culturing each of 236 
these yeast mutants with the ancestral strain of the alga. As all A-mutants and C-mutants are 237 
adaptive in both the A- and C- conditions, we pool all of them to increase our power to identify 238 
their ecological effects. We quantified the ecological effect of each mutation by measuring YYC 239 
(yeast yield in community) and AYC (algal yield in community), as well as YYA (yeast yield 240 
alone; Methods, Figure S18, S19). As before, we define yield as the species density at the end of 241 
the 5-day growth cycle. We focused on yields for two reasons. Yield is a measure of absolute 242 
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species abundance which determines the robustness of our community to demographic 243 
fluctuations: communities with higher yields of both species are more ecologically stable3. In 244 
addition, as discussed above, the ratio of YYC to YYA as well as the ratio of AYC to AYA (alga 245 
yield alone) inform us about the net balance between competition versus cooperation in our 246 
communities. 247 
We found that many of the adaptive mutations significantly affected both YYA and YYC (Figure 248 
3A, S19A,B). The majority of tested mutations, 53% (31/59), significantly decrease YYA while 249 
15% (9/59) of them significantly increase it (two-sided FDR = 28%, see Methods). At the same 250 
time, we found no mutations that significantly decreased YYC, but 34% (20/59) of them 251 
significantly increased it (FDR = 26%). Mutations have uncorrelated effects on YYA and YYC 252 
(Figure 3A), suggesting that yeast yield in the two conditions is determined by different 253 
underlying traits. Mutations in yeast also significantly alter AYC, with 24% (14/59) of mutations 254 
increasing it and 8% (5/59) decreasing it (FDR = 32%), with the effects on AYC and YYC being 255 
positively correlated (Figures 3B and S19C). 256 

The fact that mutations alter the yields of both species suggests that some of them may also tip 257 
the balance between cooperation and competition in one or the other direction. Indeed, we found 258 
that 24% (14/59) of mutants have significantly increased both AYC/AYA and YYC/YYA ratios, 259 
39% (23/59) have a significantly increased the YYC/YYA ratio only, and 12% (7/59) have 260 
significantly decreased one or both ratios (two-tailed FDR = 5%, Figure 3C). Thus, seven 261 
mutants acquired mutations that weaken the yeast-algal mutualism, at least for one of the 262 
partners, and 37 mutants acquired mutations that enhance the mutualism. 263 
These results show that yeast has access to beneficial mutations with ecologically diverse 264 
consequences and suggest that our community has the potential to embark on a variety of eco-265 
evolutionary trajectories with possibly different ecological outcomes. 266 

Mutations favored by selection in the presence of the alga 267 
strengthen the mutualism 268 

Given that adaptive mutations in yeast have a variety of ecological consequences and that yeast 269 
populations in the absence or presence of the alga are likely destined to fix different adaptive 270 
mutations, we next asked whether mutations that contend for fixation in the A- or  C-conditions 271 
might have systematically different ecological effects.  272 

We first noticed that the C-mutants clustered in the top right corner of the YYC versus AYC plot 273 
(Figure 3B). A formal statistical test confirmed that YYC and AYC values for the C-mutant 274 
communities were on average 103% and 79% higher than those for the A-mutant communities, 275 
respectively (YYC: 95% CI [62%, 143%], P = 3×10–4, permutation test; AYC: 95% CI [35%, 276 
122%]; P = 4×10–3; n1 = 28 C-mutants and n2 = 31 A-mutants). These differences remained large 277 
and significant even after accounting for the frequencies with which different driver mutations 278 
were observed in our yeast populations (YYC: P = 10–5; AYC: P = 3×10–3, permutation test, 279 
Extended Data Figure 6, see Methods), indicating that this trend is not an accidental byproduct of 280 
our choice of A- and C-mutants. Instead, the observed differences in yield must be caused by 281 
systematic genetic differences between the A- and C-mutants. In other words, in the presence of 282 
the alga, natural selection favors yeast mutants that produce higher yields in the community. This 283 
conclusion is further corroborated by the fact that both YYC and AYC are correlated strongly 284 
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and significantly with competitive fitness in the C-condition, but only weakly with fitness in the 285 
A-condition (Extended Data Figure 7). 286 

A mutation in yeast that increases YYC may concomitantly lead to either a gain or a loss of 287 
YYA (Figure 3A). Therefore, such a mutation may either increase or decrease the net benefit that 288 
yeast derives from its interactions with the alga over the growth cycle. We found that 86% 289 
(24/28) of the C-mutants had a significantly higher YYC/YYA ratio than the ancestor (FDR = 290 
21%), of which many, 32% (9/28), had also a significantly higher AYC/AYA ratio (FDR = 6%; 291 
Figure 3C) but only 1/28 had a significantly lower AYC/AYA ratio (FDR = 58%). In contrast, a 292 
smaller fraction, only 52% (16/31), of the A-mutants had a higher YYC/YYA ratio (FDR = 293 
35%), of which 16% (5/31) also had a higher AYC/AYA (FDR = 12%) and 2/31 had lower 294 
AYC/AYA  (FDR = 29%). Thus, C-mutants both benefit more often from the presence of the 295 
alga and reciprocally more often provide benefits to the alga compared to the A-mutants. In other 296 
words, adaptive mutations that dominate yeast adaptation in the presence of the alga are more 297 
likely to make yeast more cooperative and/or less competitive and thereby strengthen the 298 
mutualism, compared to mutations that dominate adaptation in the absence of the alga. 299 
An interesting potential consequence of this shift in selection on yeast precipitated by the 300 
presence of the alga is that it can change the repeatability of yeast evolution along the 301 
competition-mutualism continuum. We quantified such ecological repeatability by the 302 
probability that two randomly drawn yeast mutants that contend for fixation in a given condition 303 
both increase or both decrease the YYC/YYA ratio and simultaneously both increase or both 304 
decrease the AYC/AYA ratio. The probability of ecological parallelism would be 25% under a 305 
uniform null model. For the A-mutants, this probability is 33 ± 2.8%, indistinguishable from the 306 
null expectation (P = 0.21, two-sided χ2-test, χ2 = 1.55, df = 1). In contrast, it is 68 ± 5.5% for the 307 
C-mutants, which is significantly higher than expected (P = 6×10–8, χ2 = 29.3, df = 1) and also 308 
significantly higher than for the A-mutants (P = 0.031, two-sided permutation test; see Methods). 309 
Thus, yeast evolves more repeatably (towards stronger mutualism) in the presence of the alga 310 
than in its absence. 311 
In summary, our results show that mutations contending for fixation in yeast populations 312 
evolving alone have relatively diverse effects on the ecology of the yeast-algal community, with 313 
some strengthening and some weakening the mutualism. In contrast, mutations contending for 314 
fixation in yeast evolving in the presence of the alga predominantly lead to higher yields of both 315 
species, which strengthens the yeast-alga mutualism and makes evolution more repeatable at the 316 
ecological level. 317 

Mutualism enhancement is not selected directly but is likely a 318 
byproduct of selection for other yeast life-history traits 319 

We next asked how stronger mutualism could possibly evolve in our community. Specifically, 320 
does natural selection in the presence of the alga favor mutations that increase cooperativity 321 
and/or decrease competitiveness in yeast directly or is this bias a byproduct of selection for other 322 
traits25,52? Natural selection can directly favor rare mutualism-enhancing (i.e., more cooperative 323 
and/or less competitive) yeast mutants only if such mutants preferentially receive fitness benefits 324 
from their algal partners, that is, if there is a partner-fidelity feedback53. Our system is well-325 
mixed, so that all diffusible benefits are shared by the entire culture, eliminating any potential 326 
fitness advantage of rare mutualism-enhancing mutants25,54. The only way to prevent such 327 
diffusion and ensure preferential benefit exchange with an algal partner is for such a mutant to 328 
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form a physical association with the partner21. However, we found no evidence for such 329 
associations in any of the sampled mutants (Extended Data Figure 8; Methods). Given the 330 
absence of a plausible partner-fidelity feedback, the increased cooperativity and/or decreased 331 
competitiveness of the C-mutants must be a byproduct (pleiotropic effect) of selection for one or 332 
more other traits. 333 
We sought to identify traits under selection in the C-condition that could cause yields to increase. 334 
Both competitive fitness and yield depend on fundamental physiological and life-history traits 335 
embodied by yeast and alga, such as their growth rates, mortalities, nutrient consumption 336 
efficiencies, etc55. Since measuring all potentially relevant traits was not feasible in this study, 337 
we focused on two key traits that are known to be under selection in environments with variable 338 
nutrient availability. The maximum population growth rate, r, is important for competitive 339 
fitness when resources are abundant56,57, a condition that takes place at the beginning of each 340 
growth cycle in our cultures. The carrying capacity, K, is an indicator of nutrient utilization 341 
efficiency, which is important for competitive fitness when resources are scarce56,57, a condition 342 
that takes place at the later phase of each growth cycle. We estimate r and K in the A-condition, 343 
reasoning that these intrinsic traits would be relevant for fitness and yield in both A- and C-344 
conditions. We estimate r by regressing the natural logarithm of the yeast cell density against 345 
time during the initial phase of the growth cycle (Methods). We estimate K as the maximum 346 
yeast cell density during the growth cycle, which is usually achieved on day 2. 347 
We estimated r and K for all 59 sampled mutants (Figures S20, S21; Methods) and found that 348 
many mutations significantly increased and decreased either one or both traits (Figure 4A). We 349 
found a negative correlation between the effects of mutations on r and K (Pearson R = –0.38, 350 
95% CI: [–0.59, –0.13], two-sided permutation P = 0.004, Figure 4A), indicating a trade-off 351 
between growth rate and nutrient utilization efficiency, which is often observed in other 352 
systems58–65. More specifically, we found 16 C-mutants and 4 A-mutants have a significantly 353 
higher K and a significantly lower r than the ancestor (FDR = 18%), an observation that is rare in 354 
experimental evolution studies60 where selection usually favors higher r55,59,66–69. However, 355 
theory suggests that high-K/low-r mutations can be favored in the presence of an r-K trade-off in 356 
populations near starvation56,57. We confirmed that 60% (12/20) of our significant high-K/low-r 357 
mutants can in fact invade the ancestral yeast population in simulations of a logistic growth 358 
model (see Supplementary Information and Figure S22). While this model demonstrates the 359 
plausibility of selection favoring high-K/low-r mutants, it does not capture all the important 360 
complexities of our system. Thus, we next explicitly tested whether r and K are under selection 361 
in our A- and C-conditions. To this end, we examined the correlation between these traits and 362 
competitive fitness among all 59 assayed mutants. 363 
We found that neither r nor K are significantly correlated with fitness in the A-condition 364 
(Supplementary Information; Extended Data Figures 9B,10A; Table S4). As a result, the A-365 
mutants have r and K values that are indistinguishable from the ancestor (average ∆r = 2 ± 1.9%, 366 
P = 0.27; average ∆K = 3 ± 2.4%; P = 0.29; n = 31, permutation test). These observations 367 
suggest that other traits that we have not measured must be more important for fitness in the A-368 
condition than either r or K. In contrast, fitness in the C-condition is positively correlated with K 369 
(Figure 4B, R = 0.51, 95% CI [0.29, 0.68],  P < 10–4) and negatively correlated with r (Extended 370 
Data Figure 9A, Pearson’s R = –0.51, 95% CI [–0.68, –0.29], P < 10–4), consistent with the 371 
observed r-K trade-off, and both of these traits together explain 37% of variation in competitive 372 
fitness in the C-condition. Interestingly, a negative correlation between fitness and r persists 373 
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even after controlling for K (Table S4), suggesting that other unmeasured traits must also be 374 
important for fitness in the C-condition. Regardless, C-mutants reach K values on average 12.7% 375 
higher than the ancestor (P = 4×10–4, permutation test) and 9.5% higher than A-mutants (95% CI 376 
[2.6%, 16.3%], P = 0.03). A typical C-mutant also has a significantly lower r than both the 377 
ancestor (average ∆r = –8.7 ± 2.3%, P = 0.001) and a typical A-mutant (∆r = –11%, 95% CI [–378 
17.0%,  –5.1%], P = 7×10–4). These observations suggest that nutrient efficiency is an important 379 
component of fitness in the C-condition, and that yeast high-K/low-r mutants are favored by 380 
selection in the presence of the alga. 381 

We next asked whether higher-K mutants achieve higher yields. We might expect a strong 382 
positive correlation between these quantities because, all else being equal, mutants that reach 383 
higher density in the middle of the growth cycle due to their higher carrying capacity are more 384 
likely to maintain higher density at the end of the growth cycle. However, we found no 385 
correlation between K and YYA (Extended Data Figure 10C). This lack of correlation further 386 
confirms that adaptive mutations that we sampled must affect other unmeasured traits which are 387 
more important for yield than K. In contrast, we found that K and YYC were positively 388 
correlated (Figure 4C), suggesting that higher nutrient efficiency is important for achieving 389 
higher yields in the community with the alga. 390 
Our observations suggest a plausible model for how adaptive evolution can favor mutualism 391 
enhancement in the absence of partner-fidelity feedbacks: ecological interactions with the alga 392 
intensify selection for yeast mutants that use resources more efficiently (i.e., those that reach 393 
higher K even at the expense of reduced r); once these mutants spread in the yeast population, 394 
they support higher yields of both members of the community. Whether mutualistic partners 395 
generally induce selection for lower r and/or higher K, and whether such selection consistently 396 
leads to increased yields of both species remains an open question. 397 

Similar to our analysis of ecological parallelism, we asked whether the presence of the alga alters 398 
the probability of parallelism at the level of life-history traits, which we define as the probability 399 
that r would be affected in the same direction in two randomly sampled mutants and that K 400 
would also be affected in the same direction in these mutants (see Methods). We find that the 401 
probability of trait parallelism is 30.7 ± 1.7% for the A-mutants, which is not significantly 402 
different from 25% expected under the uniform null model (P = 0.47, two-sided χ2-test, χ2 = 403 
0.53, df = 1). In contrast, the probability of trait parallelism is 46.3 ± 4.8% for the C-mutants, 404 
which significantly exceeds 25% (P = 0.009, χ2 = 6.7, df = 1), suggesting that evolution in the 405 
presence of the alga becomes more repeatable not only at the ecological level, as shown in the 406 
previous section, but also at the level of underlying life-history traits. 407 

In summary, our results show that interactions with alga shift natural selection on yeast to favor 408 
mutants that increase K and decrease r, which in turn leads to increasing yields of both species in 409 
the community. The shift in selection imposed by the alga makes evolution more repeatable both 410 
at the level of life-history traits and even more so at the ecological level. 411 

Discussion 412 

We characterized early adaptation in the experimental yeast-alga community and made three 413 
main observations. First, we found that yeast have access to adaptive mutations that are not only 414 
genetically diverse but also have diverse ecological effects. Second, even though there are no 415 
measurable fitness trade-offs for yeast between growing alone or with the alga, the presence of 416 
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the alga modifies the fitness benefits provided by many mutations. This shift in selection 417 
pressures is sufficient to change the set of mutations that contend for fixation in yeast and 418 
thereby to alter the course of its evolution. Third, mutations that are strongly favored by selection 419 
in the presence versus absence of the alga have different ecological consequences. Specifically, 420 
the presence of the alga shifts selection on yeast to favor mutations that enhance the yeast-alga 421 
mutualism (as measured by the yield of both species at the end of the growth cycle), making 422 
evolution at the ecological level more repeatable. 423 
Insofar as our yeast-alga community is representative of other ecological communities, our 424 
results suggest that (i) organisms have access to a variety of adaptive mutations with diverse 425 
ecological consequences and (ii) ecological perturbations, such as removal or addition of species, 426 
can change the fitness effects of many of these mutations, thereby altering future outcomes of 427 
evolution not only at the genetic but also at the ecological level. As a result, the eco-evolutionary 428 
dynamics of multi-species communities are likely historically contingent on both prior 429 
evolution70 and ecology71. Thus, we might expect that ecological communities would generically 430 
have the potential to embark on a variety of divergent eco-evolutionary trajectories and approach 431 
different ecological attractors. For example, mutations that are beneficial to yeast in our 432 
community can either increase or decrease the yields of both species suggesting that our 433 
community has the potential to evolve either towards stronger mutualism or towards mutualism 434 
breakdown, with probabilities of these outcomes being dependent on whether yeast previously 435 
evolved in the presence or absence of the alga. 436 

Given this potential for ecological and evolutionary historical contingency, one might expect a 437 
priori that replicate communities would often diverge towards different ecological states. 438 
However, recent laboratory studies have found that replicate communities tend to evolve towards 439 
similar ecological states with notable repeatability13,15,16,20,21,24,25,72–76. Our results show that, 440 
while yeast has access to a set of adaptive mutations that are quite diverse in terms of their 441 
ecological effects, natural selection acting on yeast growing in the community strongly favors a 442 
biased subset of these mutations, namely those that produce higher yields of both yeast and alga. 443 
When viewed in the context of these prior observations, our findings suggest that ecological 444 
interactions may limit the space of the most likely evolutionary trajectories. In our system in 445 
particular, the presence of the alga modifies the effects of mutations in yeast in such a way that 446 
yeast evolution becomes more repeatable at the ecological level, at least over the short-term. In 447 
other words, ecological interactions may canalize evolution. Whether such canalization is a 448 
general feature of evolution in a community context remains to be determined. 449 
In our competitive mutualistic community, canalization appears to occur in the direction of 450 
enhanced mutualism in the sense that the presence of the alga shifts selection on yeast in favor of 451 
mutations that benefit both species. There are no demonstrated mechanisms that would favor 452 
such enhanced mutualism in our community directly, but our results suggest another plausible 453 
scenario for how it can evolve. Mutations in yeast favored in the presence of the alga tend to 454 
increase yeast’s carrying capacity in our medium and reduce its growth rate. Increased carrying 455 
capacity could provide the competitive advantage necessary for such mutants to spread. Once 456 
these mutations dominate, increased K and/or decreased r could enhance cooperation or reduce 457 
competition with the alga. Specifically, increased K implies that there are more yeast cells to 458 
generate CO2, which stimulates algal growth. Reduction in r could also benefit the alga via the 459 
“competitive restraint” mechanism77 in which slower growing yeast compete less for the initial 460 
supply of ammonium and thereby offer the alga an opportunity to grow more and supply more 461 
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ammonium during the latter portions of the growth cycle. However, competition for the initial 462 
ammonium can probably not be reduced to zero solely by mutations in yeast because yeast lacks 463 
the molecular machinery for metabolizing the only other nitrogen source, nitrite. Therefore, a 464 
single mutation or even a few mutations cannot alleviate yeast’s basic requirement for 465 
ammonium. Furthemore, traits other than r and K most certainly contribute to both fitness and 466 
yield. Thus, additional experiments will be needed to determine how adaptive mutations in yeast 467 
modify the competitive and cooperative phases of the growth cycle to provide an evolutionary 468 
advantage and increase the yields of both species. 469 

How the presence of the alga amplifies the fitness advantage of high-K mutants is currently 470 
unclear. An analysis of the genetic and biochemical basis of yeast adaptation may help us answer 471 
this question and assess how general the ecological mechanisms of mutualism enhancement 472 
might be. However, one challenge is that many mutations driving adaptation in yeast are large 473 
chromosomal amplifications and deletions, and it is unclear which amplified/deleted genes 474 
actually cause the fitness gains and changes in the ecologically relevant traits. At this point, we 475 
can only speculate on this subject. For example, it is known that ChrXIV-3n amplifications are 476 
adaptive under ammonium limitation, possibly driven by the copy number of the gene MEP2 that 477 
encodes a high affinity ammonium transporter78. We suspect that these adaptations are 478 
particularly beneficial to yeast in the C-condition because the alga provides a continuous but low 479 
flux of ammonia. Another interesting example are mutations in genes HEM1, HEM2 and HEM3, 480 
which provide much larger fitness benefits in the C-condition compared to the A-condition (Data 481 
S4) possibly because they shift the metabolic balance towards fermentation at higher 482 
concentrations of dissolved oxygen produced by the alga (see Supplementary Information). 483 
Elucidating these and other mechanisms of physiological adaptation in our competitive 484 
mutualistic systems is the subject of future work. 485 

To conclude, our results suggest that microbial adaptation in the community context is driven by 486 
many mutations that are genetically and phenotypically diverse and have diverse ecological 487 
consequences. Changes in the ecological milieu, such as loss of some species or invasions by 488 
others, may not necessarily alter which mutations are beneficial to community members. 489 
Nevertheless, such ecological changes can quantitatively alter the benefits of mutations, so that 490 
evolutionary trajectories become canalized towards certain ecological outcomes.  491 
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Methods 492 

Barcode lineage tracking (BLT) experiment and data analysis 493 

Strains. We used the strain CC1690 of the alga Chlamydomonas reinhardtii, which can also be 494 
obtained from the Chlamydomonas Resource Center. The barcoded library of the diploid yeast 495 
Saccharomyces cerevisiae strain GSY669940 was kindly provided by Prof. Gavin Sherlock. This 496 
is a diploid, prototrophic strain derived from the BY genetic background, homozygous 497 
throughout the genome, except for locus YBR209W, where one copy of a DNA barcode was 498 
integrated37. Our starting library consists of about 5 × 105 clones, each of which carries a unique 499 
DNA barcode at this locus. In principle, the genomes of all clones should be identical 500 
everywhere else prior to our barcode lineage tracking (BLT) experiment. However, as discussed 501 
in Supplementary Information (Sections 1.3 and 3), we found that our initial population already 502 
contains some pre-existing polymorphisms, which arose prior to our BLT experiment. 503 

Growth conditions. Both yeast monocultures and yeast-alga communities were cultured in a 504 
defined minimal medium33 (“CYM medium”) supplemented with 2% dextrose, 10mM KNO2 and 505 
0.5mM NH4Cl, which we thereafter refer to as the “growth medium”. All cultures were grown in 506 
10mL of the growth medium in 50mL flasks (FisherSci #FS2650050) capped with 50mL plastic 507 
beakers (VWR #414004-145) at room temperature (21°C) on a platform shaker with 70 foot-508 
candles of constant light (three Feit Electric #73985 suspended approximately 24 inches above 509 
the platform shaker) shaking at 125 RPM, unless noted otherwise.  510 
BLT pre-cultures. Prior to the BLT experiment, yeast and alga were pre-cultured in 50mL of 511 
growth medium in 250mL delong baffled flasks (PYREX #C4446250) for two and 10 days 512 
respectively. Alga pre-cultures were started from colonies. To start yeast pre-cultures, the 513 
barcoded yeast library was thawed from frozen stock at room temperature, then 500µL were 514 
transferred into 50mL of the growth medium. 515 

BLT initiation and propagation. We conducted five replicate BLT experiments for each of two 516 
treatments, yeast monoculture (the A-condition) and yeast + algae community (the C-condition). 517 
Each monoculture BLT experiment was initiated from 100µL of the yeast pre-culture. Each 518 
community BLT experiment was initiated from 100µL of the 1:1 (v/v) yeast and alga mixture. 519 
Cultures were grown for 5 days before being diluted 1:100 for the next growth cycle (100µL into 520 
10mL fresh media). A total of 17 growth/dilution cycles were completed. A detailed discussion 521 
on the number of generations per growth cycle is provided in Supplementary Information 522 
(Section 1.1). Throughout this work, we ignore adaptation in the alga, as discussed in 523 
Supplementary Information (Section 1.2). 524 

Culture preservation. Glycerol stocks were taken of the yeast pre-culture and yeast + algae 525 
inoculum mixture, as well as at the end of every odd growth cycle. Separate stocks were stored 526 
for DNA extraction and cell isolation purposes with two replicates each, for a total of 4 stocks 527 
per culture per time point. Cell isolation stocks were created by aliquoting 1.5mL of culture into 528 
500µL of 80% glycerol, mixing by vortex and storing at −80°C. DNA stocks were created by 529 
removing the supernatant of the remaining 7mL of culture via centrifugation and resuspending in 530 
2mL of 20% glycerol (80% glycerol diluted with 1x PBS), which was then stored as two separate 531 
1mL stocks at −80°C. 532 
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DNA isolation. DNA stocks were thawed and DNA isolated using a “salting out” method, based 533 
on established protocols79,80. The thawed stocks were first centrifuged, and the supernatant 534 
removed. The pellet was resuspended in 300µL 3% SET buffer (3% SDS, 10mM EDTA, 30mM 535 
Tris) and incubated at 65°C for 15 minutes. The tube was cooled to room temperature by 536 
immersing it in room temperature water, then 2.5µg of RNAse A was added. After vortexing, the 537 
mixture was incubated at 37°C for 1 hour, after which it was cooled on ice. 150µL of 3M Sodium 538 
Acetate was then added and mixed by inversion, after which it was cooled on ice for a further 5 539 
minutes before centrifuging at maximum speed for 10 minutes on a tabletop centrifuge. The 540 
supernatant was transferred to a new tube and DNA was precipitated by the addition of 500µL 541 
isopropanol, which was mixed by inversion and then pelleted by centrifugation for 1 minute at 542 
maximum speed. The supernatant was removed and the pellet was washed with 200µL cold 70% 543 
ethanol without vortexing before being allowed to dry inverted for 30 minutes at room 544 
temperature before the DNA was resuspended in 50µL molecular biology grade water. 545 

Sequencing library preparation. The barcode locus was amplified through a 2-step PCR 546 
protocol slightly modified from Ref. 38. The first amplification added inline indices for sample 547 
multiplexing, universal molecular identifiers for removing PCR duplicates during analysis and 548 
Illumina-compatible adapter sequences for a second round of amplification with standard 549 
Illumina Nextera XT primers. For the first reaction, 10µL of template was mixed with 25µL of 550 
OneTaq 2x Master Mix, 1µL of 25mM MgCl2, 1µL each of the forward and reverse primers (at 551 
10mM concentration) and 12µL of molecular biology grade water. Primer sequences are as 552 
described38. This mixture was amplified using the following conditions: (1) 94°C for 10 min; (2) 553 
94°C for 3 min; (3) 55°C for 1 min; (4) 68°C for 1 min; (5) Repeat steps 2–4 for a total of 8 554 
cycles; (6) 68°C for 1 min; (7) Hold at 4°C. The amplified product was purified using Ampure 555 
XP magnetic beads using established protocols (with 50µL of beads used per sample). Then, 556 
10µL of the purified product was used as the template for a second reaction along with Illumina 557 
Nextera XT primers (1µL of 10mM stock for each primer), 1µL of 25mM MgCl2, 25µL of 558 
OneTaq 2x Master Mix and 12µL of water with the following reaction conditions: (1) 94°C for 5 559 
min; (2) 94°C for 30 sec; (3) 62°C for 30 sec; (4) 68°C for 30 sec; (5) Repeat steps 2–4 for a 560 
total of 25 cycles; (6) 68°C for 5 min; (7) Hold at 4°C. The PCR products were purified using 561 
Ampure XP beads as before. 5µL of each sample was mixed to form a pool for Illumina 562 
sequencing, concentrated using Ampure beads as before with equal volume of beads as a pooled 563 
sample and size-selected via agarose gel extraction to isolate the correct amplicon before 564 
submitting for sequencing. 565 

Sequencing. Populations A1 and C1 were initially sequenced on a MiSeq platform. All 566 
populations (including A1 and C1) were then also sequenced on a HiSeq platform. Data from 567 
both runs were combined for all downstream analysis of frequency trajectories. We obtained an 568 
average of 2.6 million paired-end reads per time point. 569 

To identify and count DNA barcodes, we used a custom python pipeline BarcodeCounter2 570 
available at https://github.com/sandeepvenkataram/BarcodeCounter2. The package first uses the 571 
BLASTn tool to identify sequences known to flank the barcode region within each read pair. If 572 
reads contain inline indices, samples can be demultiplexed. Universal molecular identifier (UMI) 573 
sequences can be extracted if present within the reads. If a sequence contains multiple barcode 574 
regions, these extracted regions are concatenated together. To account for sequencing errors, 575 
DNAClust81 is then used to cluster the concatenated barcodes into clusters of nearly identical 576 
sequences which presumably originated from the same DNA molecule. The output of DNAClust 577 
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is a FASTA database of all unique barcode sequences present in the library. Then, BWA82 is 578 
used to map the barcode sequences from each sample onto the clustered FASTA database. 579 
Mapping of reads is necessary because the clustering process removes identifying information 580 
associating barcode sequences with samples from which they came. PCR duplicates are removed 581 
based on the UMI sequences, and the total number of unique reads corresponding to every 582 
barcode in the FASTA database is counted. The final output is a tab-delimited table of the read 583 
counts for every barcode in every sample. The software is designed to be user-friendly and 584 
highly customizable, with simple text files describing the input files, multiplexed samples and a 585 
sequence template describing the structure of the sequenced reads. The package is built using 586 
python3, and uses the popular BioPython package. The package has multithreading support, and 587 
can be run on both personal computers and supercomputing clusters. 588 
When generating the database of all unique barcode sequences, we clustered sequences at 95% 589 
similarity, so that, given that the length of our barcode is 52bp, sequences with 3 or more base-590 
pair differences were merged into the same cluster. This set of clustered sequences was 591 
generated only once using all of the time points from all sequenced populations.  592 
We developed an iterative heuristic procedure to identify adaptive lineages from lineage tracking 593 
data and estimate their fitness.  594 
1. Initialization. Neutral barcodes for iteration 1 are identified separately for every pair of 595 
consecutive time points. For a given time point pair, we define the set of neutral lineages at 596 
iteration 1 as those lineages whose frequency (a) does not exceed 10−4 at the earlier time point 597 
and (b) increases by less than 100-fold between cycle 1 and cycle 11. 598 
2. Estimation of mean fitness. Given the set of neutral lineages at iteration k−1, we obtain their 599 
total frequency 𝑥neut

(&'()(𝑡) at each cycle t. The frequency of neutral lineages is governed by 600 
equation 𝑥neut(𝑡 + 1) = 𝑥neut(𝑡)𝑒'*̅(,). 601 

where �̅�(𝑡) is the mean selection coefficient (per cycle) of the population at cycle t. Thus, we 602 
estimate the mean selection coefficient of the population at cycle t at iteration k as 603 

�̅�(&)(𝑡) = − log -neut
("#$)(,.()

-neut
("#$)(,)

. 604 

The mean fitness at cycle t is then defined as 1 + �̅�(&)(𝑡). 605 
3. Estimation of fitness of individual lineages. The frequency xi(t) of lineage i with selection 606 
coefficient si (per cycle) relative to the ancestor is governed by the equation 𝑥/(𝑡 + 1) =607 
𝑥/(𝑡)𝑒*&'*̅(,) = 𝑥/(𝑡)

-neut(,.()
-neut(,)

𝑒*&. Thus, for every lineage i (including those that were called as 608 

neutral at the previous iteration) we estimate 𝑠/
(&)(𝑡) at iteration k at time point t as 609 

𝑠/
(&)(𝑡) = log -&(,.()

-neut
("#$)(,.()

− log -&(,)

-neut
("#$)(,)

, 610 

where xi(t) is the observed frequency of lineage i at cycle t. These estimates are made for every 611 
pair of consecutive time points between cycles 1 and 11. If xi(t) = 0 and xi(t + 1) = 0, the time 612 
point pair is excluded from the calculations. If only one of the two frequencies is 0, then this 613 
frequency is set to 0.5 / total read depth. To obtain the final estimate of the selection coefficient 614 
si(k) for lineage i at iteration k, we average all si(k)(t), weighting each si(k)(t) by the number of reads 615 
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for lineage i at time t. We calculate the standard error 𝜎/
(&) with the same weighting. The relative 616 

fitness of lineage i is then defined as 1 + si(k). 617 

4. Calling adapted lineages. Lineage i is called adapted at iteration k if 𝑠/
(&) > 2𝜎/

(&). 618 

5. Updating the set of neutral lineages. We calculate the coefficient of variation (CV) for each 619 
lineage i as 𝜎/

(&)/𝑠/
(&). We include any lineage i into the new set of neutral lineages at iteration k 620 

if (a) its maximum frequency does not exceed 10−4 between cycles 1 and 11, and (b) either the 621 
CV of the lineage exceeds the median CV across all lineages or if si(k) < 0 (see Figure S1A). 622 

6. Termination. The procedure is terminated when the set of neutral lineages at iteration k 623 
differs by less than 5% compared to the set at iteration k − 1. 624 

Our procedure converges to a stable set of neutral lineages within 5 iterations. We have carried 625 
out sensitivity analyses of our procedure with respect to the choice of various parameters, as well 626 
as other sanity checks, as described in the Supplementary Information (Section 1.3). Note that 627 
we report fitness values relative to the ancestral strain on a per-cycle basis, rather than the per-628 
generation basis typically used in the literature because our cultures experience growth phases 629 
other than exponential growth38,83 (Figure 1, Supplementary Information (Section 1.1)). 630 

Permutation tests for differences in bDFE across conditions. We randomly relabel adapted 631 
lineages as being from either the A- or C-condition, and calculate the difference in bDFE median 632 
and IQR from this permuted data. This procedure was conducted 10,000 times, to generate a 633 
random distribution of median and IQR difference values. 634 

Competitive fitness assays 635 

We selected cycle 9 to isolate adapted mutants because the estimated fraction of adapted lineages 636 
in our evolving populations was large, but each adapted lineage was still at a low frequency 637 
(Extended Data Figures 2 and 3). Specifically, 92% of a typical population in the A-condition 638 
consisted of adapted lineages, with the median frequency of an individual adapted lineage being 639 
9×10−5 (∼ 9 cells per lineage at the bottleneck), and 73% of a typical population in the C-640 
condition consisted of adapted lineages, with the median frequency of an individual adapted 641 
lineage being 7×10−5 (∼ 7 cells per lineage at the bottleneck). 642 
Isolation of random clones. To isolate adapted clones, frozen stocks of the monoculture and 643 
community populations from cycle 9 were thawed, plated onto standard 100mm Petri dishes with 644 
CYM + 1% agarose at a dilution of approximately 100 cells per dish, and incubated at 30°C for 645 
three days (algae do not grow at 30°C). 88 random colonies were isolated from each population, 646 
i.e., a total of 440 clones from the A- and C-condition each. Eight additional clones from each 647 
population were harvested at cycle 17 and are present in the pools described below, but they are 648 
not included in any of the analyses presented in this study. Each colony was transferred into a 649 
well of a 96-well plate (Corning 3370) with 200µL of CYM media and incubated for two days at 650 
30°C. 10µLwas used for each of the “population”, “row” and “column” pools described below. 651 
Then, 50µL of 80% glycerol was added to each well, and the plate was stored at −70°C. 652 

Barcode genotyping. The DNA barcodes of all isolated clones were identified by sequencing, 653 
using the Sudoku method84,85. Specifically, 10µL of each clone was pooled into 10 “population” 654 
pools (one pool for each source population), eight “row” pools and 12 “column” pools. DNA 655 
barcodes in each pool were amplified and sequenced as described above We expect that a given 656 
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combination of row, column and population pools would have a single barcode in common, 657 
defining the isolate in the corresponding well of the appropriate plate. We determined all 658 
barcodes present in the intersection of each combinations of row, column population pool. If a 659 
single barcode is identified in the intersection, the corresponding well is assigned that barcode 660 
identity. If multiple barcodes or no barcode are identified, the associated clone is removed from 661 
further analysis. 662 

Generation of A, C and N pools. We used the heuristic procedure described above to classify 663 
clones with identified barcodes into three groups described below: non-adapted, adapted in the 664 
C-condition or adapted in the A-condition. Clones were pooled into three libraries defined by 665 
their membership in these three groups as follows. To construct each pool, we transferred 20µL 666 
of thawed frozen stock of each isolate into a 2mL 96-deep-well plate (Corning P-2ML-SQ-C) 667 
filled with 1.8mL of growth media supplemented to 10mM ammonia. After incubating these 668 
plates at 30°C for three days, we formed each pool by combining 200µL of individual saturated 669 
cultures. Three pools were stored in 20% glycerol at −70°C. 670 

For the sake of efficiency, clone pooling was based on an earlier version of the heuristic 671 
procedure used for the classification of lineages. The current version of the procedure (as 672 
described above) classifies lineages slightly differently. As a result, pools do not perfectly 673 
correspond to the classification of clones according to the current heuristic procedure, which is 674 
provided below. This minor discrepancy has no bearing on our results because the final 675 
classification of clones is based on fitness estimates from the competition assays (see below). 676 
The A pool contains 214 clones that are classified as adapted in A populations. The C pool 677 
contains 223 clones that are classified as adapted in C populations. The N pool contains 144 678 
clones, 84 of which are classified as neutral from the BLT analysis (i.e., not adapted in either A 679 
or C populations), 29 clones that are classified as adapted in the A-condition and 31 clones that 680 
are classified as adapted in the C-condition. Thus, we measured competitive fitness for a total of 681 
581 clones. 682 

Competition assay experiment. To conduct the competitive fitness assays, we pre-cultured each 683 
of the three pools (N, A and C; see above) separately in the growth media for two days. We also 684 
pre-cultured algae for 10 days, starting from colonies. We then combined A, C and N pools in 685 
the 1:1:18 ratio. We carried out three replicate competitions in the A-condition and three 686 
replicate competitions in the C-condition. To this end, we inoculated each of the six replicates 687 
with 100µL of the combined A/C/N pool. In addition, the three C-condition replicates were 688 
inoculated with 100µL of the algae preculture (∼ 106 cells / mL). 689 
All replicates were propagated in conditions identical to the BLT experiment for a total of five 690 
growth cycles. Glycerol stocks were made at the end of each growth cycle after the dilution step 691 
by centrifuging the full culture volume, removing the spent media and resuspending the pellet in 692 
2mL of 20% glycerol + PBS. Two 1mL aliquots of this glycerol suspension were stored at 693 
−70°C. One of these aliquots was harvested for DNA extraction and barcode sequencing using 694 
protocols described in the section on the heuristic BLT analysis procedure. 695 
Competition assay data analysis. Barcodes were identified and counted as described above. 696 
The resulting barcode count data were analyzed as described previously38 using software 697 
available at https://github.com/barcoding-bfa/fitness-assay-python. Briefly, the 84 non-adapted 698 
barcodes (as defined from the BLT analysis described above) from the N pool were used to 699 
estimate the mean fitness trajectories and the additive and multiplicative noise parameters for 700 
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each pair of time points in each assay38. These estimates were used to estimate the fitness of 701 
every lineage for each pair of neighboring time points along with the error in the estimate. The 702 
variance of an estimate for a given pair of time points was calculated as the inverse of the read 703 
depth at the earlier of the two timepoints + the estimated multiplicative noise parameter. Inverse 704 
variance weighting was then used to combine estimates across all time point pairs to generate a 705 
single fitness and error estimate for each lineage in each replicate. Replicate estimates were 706 
combined using further inverse variance weighting to generate the final fitness estimate for each 707 
isolate in the A- and C-conditions. For each mutant in each condition, we also calculated the 708 
95% confidence interval around the fitness estimate based on the variability in fitness 709 
measurements between replicates (assuming that measurement errors are distributed normally). 710 
Fitness estimates are provided on a per growth cycle basis, as discussed above. Validation of this 711 
analysis procedure and additional statistics are described in Supplementary Information (Section 712 
2). 713 

Genome sequencing and analysis 714 

We sequenced full genomes of 219 A-mutants, 187 C-mutants, 8 non-adapted evolved isolates 715 
and 24 ancestral isolates sampled from the inoculum population. Sequencing failed for four A-716 
mutant and six C-mutants, leaving us with 215 A-mutants and 181 C-mutants with sequenced 717 
genomes, 8 non-adapted evolved isolates and 24 ancestral isolates (a total of 428 clones). For all 718 
remaining clones, we obtained high quality genome data (> 4x coverage, mean coverage of 24x).  719 
DNA extraction and library preparation and sequencing. DNA was extracted using the YeaStar 720 
yeast genomic DNA extraction kit Protocol I (Zymo research #D2002) with in-house produced 721 
YD Digestion buffer (1% SDS + 50mM Na2PO4), DNA Wash buffer (80% ethanol + 20mM 722 
NaCl) and Elution Buffer (10mM Tris-HCl). 0.2µL of 25mg/mL RNAse A (Zymo research 723 
#E1008-8) was used for each sample, as well as 1 Unit (0.2µL of 5U/µL stock solution) of 724 
Zymolyase (Zymo research #E1004). Libraries were prepared using the method described by 725 
Baym et al86 and sequenced on the Illumina HiSeq4000 platform. Sequencing services were 726 
provided by Novogene Inc. and the UCSD Institute for Genomic Medicine. 727 
Small Variant calling. Reads were first trimmed using Trimmomatic with parameters 728 
“HEADCROP:10”, “ILLUMINACLIP:NexteraPE-PE.fa:2:30:10”, “LEADING:3”, 729 
“TRAILING:3”, “SLIDINGWINDOW:4:15” and “MINLEN:36”. Reads were then mapped with 730 
bowtie2 (v. 2.3.4.3) using -sensitive parameters to the Saccharomyces cerevisiae reference 731 
genome (v. R64-2-1) with the addition of an extra “chromosome” defining the barcode locus. 732 
Reads were sorted, duplicates marked and short variants were called and filtered using GATK (v. 733 
4.0.11.0) AddOrReplaceReadGroups, MarkDuplicates, HaplotypeCaller and VariantFiltration, 734 
respectively. Variant filtration used the filter expression “QD<10.0 || FS>20.0 || MQ<20.0 || 735 
AN>10 || AF<0.25 || QUAL<100.0 || DP<3” All other commands used default parameters. 736 
Variants were annotated with ENSEMBL Variant Effect Predictor using their command-line 737 
tool. As many variants had multiple possible annotations, coding sequence annotations 738 
(“missense variant”, “frameshift variant”, “stop gained” and “stop lost”) were prioritized over 739 
synonymous annotations, which were prioritized over upstream noncoding annotations (within 740 
2kb of a gene) and finally downstream noncoding annotations (again within 2kb of a gene). 741 
Variants further of 2kb of any gene or those within 2kb but with no annotations were removed as 742 
likely nonfunctional. Finally, variants with less than 3 reads of support for the derived allele 743 
were removed as putative false positives. 744 
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Additional filtering to remove erroneous and ancestral variants. The procedure described 745 
above identified 34,720 small variants across 428 sequenced isolates. We expect that many of 746 
these variants are sequencing and/or mapping errors that our procedure failed to remove, as well 747 
as fixed differences from the reference genome present in the ancestor of our experiment. To 748 
further filter out such spurious variants, we estimate the ancestral allele frequency spectrum from 749 
24 sequenced ancestral clones and compare it with a typical allele frequency spectrum of 24 750 
adapted mutants (averaged over 1000 random draws of 24 adapted mutants). As Figure S15 751 
shows, the latter has an excess of variants that are present only in one clone, as expected for de 752 
novo mutations. The fact that there is no excess of mutations present in two or more adapted 753 
clones suggests that all or most mutations observed in two or more adapted clones are not 754 
adaptive. After removing 303 such variants, each of which was detected in 110 isolates on 755 
average, we are left with 1842 mutations across 428 sequenced strains (4.30 per clone), of which 756 
33 strains carry no detectable derived small variants (Table S2 and Data S3). 757 
Copy number variant calling. To identify large copy number variants (CNVs), we generate 758 
coverage plots for each sequenced clone by averaging read depth into 1kb windows with 759 
bedtools genomecov. An example plot is shown in Figure S13A. As coverage negatively 760 
correlates with the distance to telomeres (Figure S14), we re-calculate coverage after correcting 761 
for this variation (Figure S13B). We then manually identify CNVs from these corrected coverage 762 
plots by visualizing the coverage distribution at higher resolution (Figure S13C). 763 

We identified 176 CNVs across 167 strains (Data S3), of which 85 are whole-chromosome 764 
aneuploidies. We found no CNVs in 32 sequenced ancestral and neutral isolates (Figure S16C, 765 
Table S2), we estimate the frequency of observing a non-adaptive CNV event as at most 1/32. 766 
Thus, we expect at most 12.4 such events among 396 sequenced adaptive clones. In fact, we 767 
found 176 CNV events, which suggests that all or almost all of them are adaptive (expected FDR 768 
≤ 0.07; Data S4). 769 

Identification of driver loci carrying small adaptive mutations. To differentiate adaptive 770 
“driver” mutations among residual ancestral and erroneous variants as well as nonadaptive 771 
“passenger” mutations, we rely on the idea of genetic parallelism, i.e., the fact that loci under 772 
selection gain mutations in independent lineages more often than expected by chance87,88. For 773 
each gene, we define its multiplicity as the number of clones that carry a mutation in this gene. 774 
Since shorter genes require lower multiplicity to be called adaptive, we bin genes by their length 775 
into six 1kb bins plus one bin for genes with length ≥ 6kb. For each length bin l = 1,2,...,7, we 776 
count the number of genes whose multiplicity is m = 1,2,..., denoting these counts by klm. We 777 
obtain the number of such genes 〈𝑘01〉 expected in the absence of selection as follows. 778 
We randomly and independently redistribute N = 1718 mutations (small mutations in adaptive 779 
clones after removing multiple mutations in the same gene in the same clone) across 7226 yeast 780 
genes 1000 times, with the probability for each mutation landing in a given gene being 781 
proportional to its length + 2kb. Then, the observed excess number of mutations with 782 
multiplicity m in length bin l is 𝑎01 = max{0, 𝑘01 − 〈𝑘01〉}. These excess mutations are 783 
assumed to be adaptive. We redistribute the remaining ⌊𝑁 − ∑ ∑ 𝑎011

2
03( ⌋ potentially non-784 

adaptive mutations as before, and identify additional excess mutations as adaptive. We repeat 785 
this procedure iteratively until the total number of excess mutations is ≤ 1. We achieve 786 
convergence after 8 iterations and thereby obtain the final expected counts 〈𝑘01〉. 787 
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Next, we would like to identify specific loci that carry adaptive mutations as those with 788 
multiplicities above some threshold. Specifically, we would like to determine multiplicity 789 
thresholds Ml for each length bin l = 1,...,7, so that all loci in that bin with multiplicities ≥ Ml  are 790 
called adaptive. To do so, for all l we calculate the expected FDR at the given multiplicity 791 
threshold Ml as 792 

𝛽(𝑀0) =
∑ 〈&+,〉,-.+
∑ &+,/,/-.+

. 793 

We choose the multiplicity thresholds Ml, so that β(Ml) ≤ β∗ for all l and for some desired β∗. We 794 
use β∗ = 10%. We estimate the overall FDR as 795 

𝛽(𝑀0) =
∑ ∑ 〈&+,〉,-.+
0
+1$	

∑ ∑ 〈&+/,/〉,/-.+
0
+/1$	

. 796 

We conduct this analysis considering all 396 sequenced adaptive isolates together, as well as A- 797 
and C-mutants separately. Loci identified in any one of these three analyses are defined as 798 
putative adaptive loci. After identifying putative 63 adaptive loci this way, we assume that all 799 
discovered 185 mutations at these loci are adaptive (Data S4). An extended discussion of our 800 
analysis of adaptive mutations can be found in the Supplementary Information (Section 3). 801 

Probability of genetic parallelism. We calculate the probability of genetic parallelism Pg for a 802 
set of mutants as follows. We consider every pair of mutants, and calculate the proportion that 803 
have a mutation in at least one common adaptive locus (including both small variants and 804 
CNVs). Adaptive isolates with no mutations at the identified adaptive loci are assumed to have 805 
an adaptive mutation at a locus that is not shared with any other isolate in the set. To test whether 806 
A- and C-mutants have different probabilities of genetic parallelism, we reshuffle the evolution 807 
treatment label (i.e. Alone vs Community) across all A- and C-mutants and calculate Pg for both 808 
resulting groups. We obtain the absolute value of the difference in Pg between the two groups, 809 
|∆Pg|, in 1000 such permutations, and estimate the P-value as the fraction of permutations where 810 
|∆Pg| exceeds the observed difference. 811 

Phenotyping 812 

For all phenotypic measurements, replicate measurements were conducted using distinct 813 
samples. In no case was a single sample measured repeatedly. 814 
Measurement of ancestral yeast and algae growth. Yeast and algae were thawed from frozen 815 
stocks (−80°C for yeast, LN2 storage for algae) and grown separately in standard growth 816 
conditions for one growth cycle. Communities were inoculated by mixing 100 µL of yeast with 817 
104 cells of algae into 10 mL of our standard growth culture and propagated for 1 growth cycle 818 
via 100-fold dilution. On the second growth cycle, each culture (yeast alone, algae alone and the 819 
community, with six replicates each) was characterized daily by CFU counting for the yeast, and 820 
chlorophyll fluorescence measurements for the alga. Each culture was plated onto CYM media 821 
plates (1% agarose for) and were incubated at 30°C. Colonies were counted to estimate the 822 
density of yeast in each culture at each timepoint. We estimate alga density by measuring 823 
chlorophyll b fluorescence. To that end, we transfer 200µL of each culture into a well of a black-824 
wall clear-bottom 96-well plate (Corning) and measure fluorescence in a plate reader (Molecular 825 
Devices Spectramax i3x, excitation at 435nm and observation at 670nm). Chlorophyll 826 
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fluorescence intensity measurements were converted into cell density estimates by using a 827 
calibration curve as described in the Supplementary Information (Section 5.1). 828 

Selection of A- and C-mutants for phenotyping experiments. We selected 31 C-mutants and 829 
28 A-mutants to cover a diversity of mutations and fitness values represented among all sampled 830 
adaptive mutants (see Data S4 for the number of mutants selected from each mutation class). Our 831 
reasoning for this non-random sampling was that mutants carrying a driver mutation at the same 832 
locus would have similar phenotypic values. If we selected clones for phenotyping randomly, we 833 
would have likely not observed more rare phenotypes. To account for this over-dispersion in the 834 
selection of mutants we apply the mutation weighting procedure described below. 835 
Measurement of YYA. To estimate YYA, we inoculated all 60 yeast strains (including the 836 
ancestor) individually into the standard conditions (10 mL of media in 50 mL flasks) from frozen 837 
stocks and propagated them for two cycles (10 days). During the third cycle, we estimated yeast 838 
densities after 5 days of growth by plating and colony counting as described below. Correlations 839 
between replicate measurements are shown in Figure S19A. 840 

Measurements of YYC and AYC. We create mutant communities as follows. On day 0, we 841 
inoculate 50 mL growth media (in 250 mL non-baffled Erlenmeyer flask) with 1 mL of CC1690 842 
C. reinhardtii stock stored in a liquid nitrogen freezer and incubate for 20 days. On day 20, 100 843 
µL of this culture are transferred to the standard conditions (10 mL of fresh media in a 50 mL 844 
flask). Also on day 20, the 60 yeast strains (including the ancestor) are individually inoculated 845 
into the standard condition from frozen stocks. On day 25, we form the mutant communities by 846 
transferring 100 µL of each yeast culture and 200 µL of the algae culture into fresh media (200 847 
µL of alga were used instead of 100 µL because the density of algae culture was approximately 848 
50% of that at the initiation of the BLT experiment). These mutant communities are grown for 849 
one cycle in our standard conditions. On day 30, we transfer 100 µL of each mutant community 850 
into 10 mL fresh media, as in the BLT experiment. We estimate both yeast and alga density on 851 
day 35, as described previously. Yield estimates can be found in Data S2. Correlations between 852 
replicate measurements are shown in Figure S19B,C. 853 

Microscopy. To detect potential physical associations between algae and beneficial yeast 854 
mutants, we created mutant communities as described above. After 5 days of growth, 855 
communities were then mounted on glass microscope slides (Fisher Scientific 12550143), sealed 856 
with Dow Corning high vacuum grease (Amazon B001UHMNW0) and imaged on a light 857 
microscope using a 20x objective with DIC. Extended Data Figure 8 shows one representative 858 
community; the remaining 17 imaged mutant communities along with WT controls can be found 859 
in the Dryad data repository. 860 

Mutant growth curve measurements. To estimate the growth parameters r and K for individual 861 
beneficial mutants, we carried out growth curve measurement experiments of individual yeast 862 
mutants and the ancestor in the A-condition. To this end, we inoculated all 60 yeast strains 863 
(including the ancestor) individually into the BLT condition (10mL of media in 50mL flasks) 864 
from frozen stocks and propagated them for two cycles (10 days). During the third cycle, we 865 
estimated yeast densities on days 10, 10.5, 11, 11.5, 12, 13, 14 and 15 by plating and colony 866 
counting as described in the section “Measurements of YYC and AYC.” The growth curves are 867 
shown in Figure S20 and the data are provided in Data S2. 868 

We estimate r as the slope of the relationship between log(CFU/mL) and time (in hours) for the 869 
three measurements between 12 and 36 hours of growth. We estimate K as the maximum 870 
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observed density (in CFU/mL). r and K estimates can be found in Data S2. Correlations between 871 
replicate measurements are shown in Figure S21. 872 

Mutation weighting. Even though not all A- or C-mutants were phenotyped, we would like to 873 
make certain statistical statements about the distribution of phenotypes among all sampled A- or 874 
C-mutants. To this end, we associate each of the 59 phenotyped mutants with a single driver 875 
mutation. Mutants with multiple driver mutations are associated only with the most common 876 
driver mutation. Mutants with no identified driver mutations are associated with a unique 877 
unknown mutation. To obtain the prevalence of a given phenotypic value among all A- or C-878 
mutants, we weight each measured phenotypic value by the number of sequenced A- or C-879 
mutants with the same driver locus as the phenotyped mutant and divide by the total number of 880 
phenotyped A- or C-mutants. 881 
Kernel density estimation. We use kernel density estimate (KDE) to determine how likely 882 
certain phenotypic trait values would occur among all A- and/or C-mutants. Specifically, we 883 
obtain the kernel density estimates DA(y,a) and DC(y,a) for the probabilities that a community 884 
formed by the ancestral alga and a random A- or C-mutant, respectively, would produce yeast 885 
yield y and alga yield a. To estimate DA, we apply the kde2d function in R with bandwidth 1 886 
along the x-axis and 4/3 along the y-axis to the mutation-weighted yield data for the A-mutants. 887 
We analogously obtain DC(y,a). 888 
Accounting for measurement errors in statistical tests by permutation testing. As the 889 
measurement errors in our estimates of phenotypic values (r, K, yeast yield and algae yield) are 890 
quite large, we use a permutation and resampling procedure to determine the statistical 891 
significance in various tests involving these variables. In this procedure, we permute isolate 892 
labels and resample the phenotypic values associated with each isolate from the normal 893 
distribution with the estimated mean and the estimated standard error of the mean. We carry out 894 
1000 permutation and resampling instances in each test. To estimate the false positive rate, we 895 
count the fraction of resampled values that are significant at a chosen threshold and averaged this 896 
number over all permutations. False discovery rate (FDR) is then computed by dividing the 897 
average number of false positives by the number of observed positives. 898 
Permutation tests of Pearson correlation significance are conducted as follows. For each 899 
permutation, isolate labels for each variable are permuted independently and phenotypic values 900 
are resampled as above. A randomized correlation coefficient is determined from each of the 901 
1000 permutations, and significance is determined by the proportion of randomized R2 values 902 
that exceed the observed R2 value. 903 

Phenotypic parallelism analysis. We quantify the degree of parallelism among a set of mutants 904 
with respect to a pair of quantitative traits X and Y by estimating the probability that, for two 905 
randomly selected mutants, trait X changes in the same direction in both mutants and trait Y 906 
changes in the same direction in both mutants. Mathematically, if one randomly selected mutant 907 
has trait increments ∆Xi and ∆Yi  relative to the ancestor and the other mutant has trait increments 908 
∆Xj  and ∆Yj, we estimate the probability that both (∆Xi)(∆Xj) ≥ 0 and (∆Yi)(∆Yj) ≥ 0. This 909 
measure of phenotypic parallelism emphasizes the direction of change rather than the magnitude. 910 
When we compute this measure for the pair of yields of mutant communities, in which case X 911 
and Y are yeast and alga yields, we refer to it as the probability of ecological parallelism, Pe. 912 
When we compute this measure for the growth phenotypes, in which case X and Y are r and K, 913 
we refer to it as the probability of phenotypic parallelism, Pph. 914 
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We obtain these probabilities of parallelism for the A- and C-mutants. We test the significance of 915 
the deviation of these probabilities from the expectation of 25% parallelism via a χ2-test. To 916 
determine the statistical significance of the difference between the probabilities of parallelism for 917 
the A- and C-mutants, we resample the phenotypic values of each of the 59 mutants from the 918 
normal distribution (see above) and permute mutant genotype and home-environment labels, so 919 
that the genotype and label are always associated with each other but dissociated from the 920 
phenotypic values. We then calculate the parallelism probabilities for these permuted and 921 
resampled data. We estimate the P-value by carrying out this permutation and resampling 922 
procedure 1000 times. 923 

Data Availability 924 

All raw sequencing data is available on the US National Center for Biotechnology Information 925 
(NCBI) Sequence Read Archive (SRA) under BioProject PRJNA735257. Other input data (e.g. 926 
growth data, variant calls, community yield etc) can be found on Dryad at 927 
https://doi.org/10.6076/D14K5X.  928 

Code Availability 929 

The latest version of the barcode counting software BarcodeCounter2 can be found at 930 
https://github.com/sandeepvenkataram/BarcodeCounter2.git. Analysis scripts can be found on 931 
Dryad at https://doi.org/10.6076/D14K5X.   932 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 24 

References 933 

1. Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-934 
calcified habitats in a subtropical-temperate transition zone. Sci. Rep. 8, 11354 (2018). 935 
2. Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 936 
(2002). 937 
3. Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. 938 
Biol. Sci. 284, (2017). 939 
4. White, E. P. et al. A comparison of the species-time relationship across ecosystems and 940 
taxonomic groups. Oikos 112, 185–195 (2006). 941 
5. Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity 942 
on islands. Proc. Natl. Acad. Sci. U. S. A. 105 Suppl 1, 11490–11497 (2008). 943 
6. Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 944 
(1998). 945 
7. Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem 946 
ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. 947 
Soc. Lond. B Biol. Sci. 364, 1629–1640 (2009). 948 

8. Reznick, D. N. & Travis, J. Experimental Studies of Evolution and Eco-Evo Dynamics in 949 
Guppies (Poecilia reticulata). Annu. Rev. Ecol. Evol. Syst. (2019) doi:10.1146/annurev-ecolsys-950 
110218-024926. 951 
9. Hendry, A. P. Eco-evolutionary Dynamics. (Princeton University Press, 2020). 952 

10. Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and 953 
ecological dynamics. Science 331, 426–429 (2011). 954 

11. Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution 955 
drives ecological dynamics in a predator–prey system. Nature vol. 424 303–306 (2003). 956 

12. Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species 957 
interactions in a biofilm community. Nature 445, 533–536 (2007). 958 

13. Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of 959 
a microbial mutualism. Proc. Natl. Acad. Sci. U. S. A. 107, 2124–2129 (2010). 960 

14. Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population 961 
dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 962 
(2011). 963 
15. Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. 964 
PLoS Biol. 10, e1001330 (2012). 965 
16. Celiker, H. & Gore, J. Clustering in community structure across replicate ecosystems 966 
following a long-term bacterial evolution experiment. Nat. Commun. 5, 4643 (2014). 967 
17. Andrade-Domínguez, A., Salazar, E., Vargas-Lagunas, M. del C., Kolter, R. & Encarnación, 968 
S. Eco-evolutionary feedbacks drive species interactions. ISME J. 8, 1041–1054 (2014). 969 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 25 

18. Reznick, D. Hard and Soft Selection Revisited: How Evolution by Natural Selection Works 970 
in the Real World. J. Hered. 107, 3–14 (2016). 971 

19. Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. 972 
Experimental Evidence of an Eco-evolutionary Feedback during Adaptive Divergence. Curr. 973 
Biol. 26, 483–489 (2016). 974 
20. Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution 975 
of bidirectional costly mutualism from byproduct consumption. Proc. Natl. Acad. Sci. U. S. A. 976 
115, 12000–12004 (2018). 977 

21. Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal Fitness Feedbacks 978 
Promote the Evolution of Mutualistic Cooperation. Curr. Biol. (2020) 979 
doi:10.1016/j.cub.2020.06.100. 980 
22. Adamowicz, E. M., Muza, M., Chacón, J. M. & Harcombe, W. R. Cross-feeding modulates 981 
the rate and mechanism of antibiotic resistance evolution in a model microbial community of 982 
Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020). 983 

23. Rodríguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions 984 
in a fluctuating environment. ISME J. 15, 450–460 (2021). 985 

24. Barber, J. N. et al. The evolution of coexistence from competition in experimental co-986 
cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 15, 746–761 (2021). 987 

25. Hart, S. F. M., Chen, C.-C. & Shou, W. Pleiotropic mutations can rapidly evolve to directly 988 
benefit self and cooperative partner despite unfavorable conditions. Elife 10, (2021). 989 

26. Kokko, H. et al. Can Evolution Supply What Ecology Demands? Trends Ecol. Evol. 32, 187–990 
197 (2017). 991 

27. Nuismer, S. Introduction to Coevolutionary Theory. (Macmillan Learning, 2017). 992 
28. Stoltzfus, A. & McCandlish, D. M. Mutational Biases Influence Parallel Adaptation. Mol. 993 
Biol. Evol. 34, 2163–2172 (2017). 994 
29. Payne, J. L. et al. Transition bias influences the evolution of antibiotic resistance in 995 
Mycobacterium tuberculosis. PLoS Biol. 17, e3000265 (2019). 996 
30. Storz, J. F. et al. The role of mutation bias in adaptive molecular evolution: insights from 997 
convergent changes in protein function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180238 998 
(2019). 999 

31. Gomez, K., Bertram, J. & Masel, J. Mutation bias can shape adaptation in large asexual 1000 
populations experiencing clonal interference. Proc. Biol. Sci. 287, 20201503 (2020). 1001 

32. Venkataram, S., Monasky, R., Sikaroodi, S. H., Kryazhimskiy, S. & Kacar, B. Evolutionary 1002 
stalling and a limit on the power of natural selection to improve a cellular module. Proceedings 1003 
of the National Academy of Sciences 117, 18582–18590 (2020). 1004 
33. Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal-1005 
algal mutualism. Science 345, 94–98 (2014). 1006 
34. Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial 1007 
ecosystems. Cell 161, 49–55 (2015). 1008 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 26 

35. Chacón, J. M., Hammarlund, S. P., Martinson, J. N. V., Smith, L. B. & Harcombe, W. R. The 1009 
Ecology and Evolution of Model Microbial Mutualisms. Annu. Rev. Ecol. Evol. Syst. 52, 363–1010 
384 (2021). 1011 
36. Blasche, S., Kim, Y., Oliveira, A. P. & Patil, K. R. Model microbial communities for 1012 
ecosystems biology. Current Opinion in Systems Biology 6, 51–57 (2017). 1013 
37. Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. 1014 
Nature 519, 181–186 (2015). 1015 
38. Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of 1016 
adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016). 1017 
39. Jones, E. I., Bronstein, J. L. & Ferrière, R. The fundamental role of competition in the 1018 
ecology and evolution of mutualisms. Ann. N. Y. Acad. Sci. 1256, 66–88 (2012). 1019 
40. Boyer, S., Hérissant, L. & Sherlock, G. Adaptation is influenced by the complexity of 1020 
environmental change during evolution in a dynamic environment. PLoS Genet. 17, e1009314 1021 
(2021). 1022 

41. Blundell, J. R. et al. The dynamics of adaptive genetic diversity during the early stages of 1023 
clonal evolution. Nature Ecology & Evolution 3, 293–301 (2019). 1024 

42. Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of 1025 
fixed beneficial mutations and the rate of adaptation in asexual populations. Proceedings of the 1026 
National Academy of Sciences 109, 4950–4955 (2012). 1027 
43. Good, B. H., Martis, S. & Hallatschek, O. Adaptation limits ecological diversification and 1028 
promotes ecological tinkering during the competition for substitutable resources. Proceedings of 1029 
the National Academy of Sciences 115, E10407–E10416 (2018). 1030 

44. Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and 1031 
spectrum in yeast. Proc. Natl. Acad. Sci. U. S. A. 111, E2310–8 (2014). 1032 

45. Dunham, M. J. et al. Characteristic genome rearrangements in experimental evolution of 1033 
Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 99, 16144–16149 (2002). 1034 

46. Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. 1035 
Proc. Natl. Acad. Sci. U. S. A. 109, 21010–21015 (2012). 1036 

47. Sunshine, A. B. et al. The fitness consequences of aneuploidy are driven by condition-1037 
dependent gene effects. PLoS Biol. 13, e1002155 (2015). 1038 

48. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual 1039 
population. Genetica 102-103, 127–144 (1998). 1040 

49. Desai, M. M. & Fisher, D. S. Beneficial Mutation–Selection Balance and the Effect of 1041 
Linkage on Positive Selection. Genetics 176, 1759–1798 (2007). 1042 

50. Schiffels, S., Szöllosi, G. J., Mustonen, V. & Lässig, M. Emergent neutrality in adaptive 1043 
asexual evolution. Genetics 189, 1361–1375 (2011). 1044 

51. Nguyen Ba, A. N. et al. High-resolution lineage tracking reveals travelling wave of 1045 
adaptation in laboratory yeast. Nature 575, 494–499 (2019). 1046 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 27 

52. Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. 1047 
Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004). 1048 

53. Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. 1049 
Biol. 79, 135–160 (2004). 1050 

54. Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 1051 
2166–2172 (2010). 1052 

55. Vasi, F., Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia 1053 
coli. II. Changes in life-history traits during adaptation to a seasonal environment. Am. Nat. 144, 1054 
432–456 (1994). 1055 
56. MacArthur, R. H. & Wilson, E. O. The theory of island biogeography. (Princeton University 1056 
Press, 2001). 1057 
57. Reznick, D., Bryant, M. J. & Bashey, F. r- and K-selection revisited: the role of population 1058 
regulation in life-history evolution. Ecology 83, 1509–1520 (2002). 1059 
58. Mueller, L. D. & Ayala, F. J. Trade-off between r-selection and K-selection in Drosophila 1060 
populations. Proc. Natl. Acad. Sci. U. S. A. 78, 1303–1305 (1981). 1061 
59. Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an 1062 
evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251 (2006). 1063 
60. Bachmann, H. et al. Availability of public goods shapes the evolution of competing 1064 
metabolic strategies. Proc. Natl. Acad. Sci. U. S. A. 110, 14302–14307 (2013). 1065 
61. Lipson, D. A. The complex relationship between microbial growth rate and yield and its 1066 
implications for ecosystem processes. Front. Microbiol. 6, 615 (2015). 1067 
62. Orivel, J. et al. Trade-offs in an ant-plant-fungus mutualism. Proc. Biol. Sci. 284, (2017). 1068 

63. Fritts, R. K. et al. Enhanced nutrient uptake is sufficient to drive emergent cross-feeding 1069 
between bacteria in a synthetic community. ISME J. 14, 2816–2828 (2020). 1070 

64. Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W. Metabolic enzyme 1071 
cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput. Biol. 1072 
14, e1006010 (2018). 1073 
65. Cheng, C. et al. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in 1074 
microbial metabolism. PLoS Comput. Biol. 15, e1007066 (2019). 1075 
66. Luckinbill, L. S. r and K Selection in Experimental Populations of Escherichia coli. Science 1076 
202, 1201–1203 (1978). 1077 
67. Oxman, E., Alon, U. & Dekel, E. Defined order of evolutionary adaptations: experimental 1078 
evidence. Evolution 62, 1547–1554 (2008). 1079 
68. Jasmin, J.-N., Dillon, M. M. & Zeyl, C. The yield of experimental yeast populations declines 1080 
during selection. Proc. Biol. Sci. 279, 4382–4388 (2012). 1081 
69. Laan, L., Koschwanez, J. H. & Murray, A. W. Evolutionary adaptation after crippling cell 1082 
polarization follows reproducible trajectories. Elife 4, (2015). 1083 
70. Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: 1084 
Replaying life’s tape. Science 362, (2018). 1085 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 28 

71. Fukami, T. Historical contingency in community assembly: integrating niches, species pools, 1086 
and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015). 1087 

72. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 1088 
394, 69–72 (1998). 1089 

73. Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in 1090 
phage lambda. Science 335, 428–432 (2012). 1091 

74. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in 1092 
Escherichia coli. PLoS Biol. 11, e1001490 (2013). 1093 

75. Hillesland, K. L. et al. Erosion of functional independence early in the evolution of a 1094 
microbial mutualism. Proc. Natl. Acad. Sci. U. S. A. 111, 14822–14827 (2014). 1095 

76. Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial 1096 
microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 1097 
(2021). 1098 
77. MacLean, R. C. The tragedy of the commons in microbial populations: insights from 1099 
theoretical, comparative and experimental studies. Heredity  100, 471–477 (2008). 1100 
78. Dunn, B. et al. Recurrent rearrangement during adaptive evolution in an interspecific yeast 1101 
hybrid suggests a model for rapid introgression. PLoS Genet. 9, e1003366 (2013). 1102 
79. Lee, C. K., Araki, N., Sowersby, D. S. & Lewis, L. K. Factors affecting chemical-based 1103 
purification of DNA from Saccharomyces cerevisiae. Yeast 29, 73–80 (2012). 1104 
80. Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in 1105 
Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 1106 
875–888 (1990). 1107 

81. Ghodsi, M., Liu, B. & Pop, M. DNACLUST: accurate and efficient clustering of 1108 
phylogenetic marker genes. BMC Bioinformatics 12, 271 (2011). 1109 

82. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. 1110 
Bioinformatics 25, 1754–1760 (2009). 1111 

83. Li, Y. et al. Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions. 1112 
Curr. Biol. 28, 515–525.e6 (2018). 1113 

84. Barillot, E., Lacroix, B. & Cohen, D. Theoretical analysis of library screening using a N-1114 
dimensional pooling strategy. Nucleic Acids Res. 19, 6241–6247 (1991). 1115 

85. Baym, M., Shaket, L., Anzai, I. A., Adesina, O. & Barstow, B. Rapid construction of a 1116 
whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. 1117 
Nat. Commun. 7, 13270 (2016). 1118 
86. Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. 1119 
PLoS One 10, e0128036 (2015). 1120 
87. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 1121 
(2012). 1122 
88. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes 1123 
adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014). 1124 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 29 

Acknowledgements: We thank Gavin Sherlock and Katja Schwartz for providing the barcoded 1125 
yeast library, Stephen Mayfield and Frank Fields for laboratory equipment and help with algal 1126 
husbandry, Rachel Dutton and Manon Morin for help with sequencing, Scott Rifkin and Jessica 1127 
Bloom for help with microscopy, STARS students Jesse Yu and Sophia Rosemann for help with 1128 
experiments, Justin Meyer, Alena Martsul, Shohreh Sikaroodi for technical assistance, the 1129 
Kryazhimskiy, Meyer and Hwa labs, Damien Barrett, Josh Borin, Shermin de Silva, Susanne 1130 
Dunker, Nandita Garud, Stan Harpole, Canan Karakoç, Holly Moeller, Dmitri Petrov, and Peter 1131 
Zee for feedback on the manuscript. Sequencing was done in part at the UCSD IGM center 1132 
(University of California, San Diego, La Jolla, CA). We acknowledge the San Diego 1133 
Supercomputing Center for the use of the TSCC cluster for computing services. EFYH is funded 1134 
by National Science Foundation CAREER grant 1846376 and Deutsches Zentrum für Integrative 1135 
Biodiversitätsforschung (iDiv) grant DFG–FZT 118, 202548816. SK is funded by BWF Career 1136 
Award at the Scientific Interface grant 1010719.01, Alfred P. Sloan Foundation grant FG-2017-1137 
9227 and the Hellman Foundation. 1138 

Author contributions: conceptualization (SV, EFYH, SK), methodology (SV, HYK, SK), data 1139 
acquisition (SV), analysis (SV, HYK, SK), initial manuscript (SV, SK), editing (SV, HYK, 1140 
EFYH, SK), supervision (EFYH, SK), funding (SK). 1141 
Competing interests: The authors declare no competing interests. 1142 

Materials and Correspondence: All raw sequencing data is available on the US National 1143 
Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject 1144 
PRJNA735257.  Other input data (e.g.  growth data, variant calls, community yield etc) and 1145 
analysis scripts can be found in Data Files S1–S4 and on Dryad at 1146 
https://doi.org/10.6076/D14K5X. Strains and other biological materials are available by request 1147 
to SK. 1148 

Code availability: The latest version of the barcode counting software BarcodeCounter2 can be 1149 
found at https://github.com/sandeepvenkataram/BarcodeCounter2.git. All other analysis scripts 1150 
used for this study are available on Dryad at https://doi.org/10.6076/D14K5X. 1151 
Code and data availability for reviewers: As the data and code is not currently publicly 1152 
available on Dryad, reviewers can access this data through the following reviewer link: 1153 
https://datadryad.org/stash/share/g4RSTbYCCwCpQxidH0dhQDKf7SsVsijY8pjzcsy7Y88 1154 

 1155 

  1156 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


 30 

Figures 1157 

Figure 1. Growth of ancestral yeast and alga. Growth of the ancestral yeast and alga alone 1158 
(solid lines) and in a community (dashed lines) over the 5-day cycle. Error bars show ±1 1159 
standard error of the mean. Growth curve data can be found in Data S1. 1160 
  1161 
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 1162 
Figure 2. The presence of the alga affects adaptation in yeast at fitness and genetic levels. 1163 
(A) Yeast bDFE when evolving alone (top) and in the community with the alga (bottom). Each 1164 
histogram is constructed from data pooled across five replicate BLT experiments. Blue outlines 1165 
show the bDFE in the other condition. Each colored point indicates the average fitness of a 1166 
mutant carrying a mutation at the indicated adaptive locus (same data as in panel B). Large 1167 
CNVs are referred to as chrx-yn, where x is the chromosome number and y is the number of 1168 
copies. (B) Fitness of A- and C-mutants measured in competition assays in the A- and C-1169 
conditions. Mutants carrying mutations at the 7 most common driver loci are colored. Error bars 1170 
show ±1 standard error. The solid line indicates the diagonal. (C) Distribution of adaptive 1171 
mutations among A- and C-mutants. Seven most common driver loci are shown individually; all 1172 
other mutations are grouped into “Other” (see Data S3 for full distributions). Adaptive mutations 1173 
that are expected to be present in our mutants but were not identified in the genome data are 1174 
labeled as “Unknown” (see Methods for details). Numbers indicate how many A- and C-mutants 1175 
carry each type of driver mutation. 1176 
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 1180 
Figure 3. Adaptive mutations in yeast have diverse ecological consequences. (A) Correlation 1181 
between yeast yield in community (YYC) and yeast yield alone (YYA), normalized by ancestral 1182 
values, across sampled mutants. (B) Correlation between yeast yield in community (YYC) and 1183 
alga yield in community (AYC), normalized by ancestral values, across sampled mutants. (C) 1184 
The ratio of YYC to YYA and the ratio of AYC to AYA (algal yield alone), normalized by 1185 
ancestral values, across sampled mutants. Darker shades of green indicate stronger mutualism. In 1186 
all panels, error bars represent ±1 standard error of the mean. In panels A and B, P-values are 1187 
obtained by permutation (Methods) and solid lines are fitted by linear regression. 1188   1189 
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 1190 
Figure 4. The effects of adaptive mutations on life-history traits, fitness and yield. The 1191 
effects of mutations on growth rate (r) and peak density (K) in the A-condition, ∆r and ∆K, are 1192 
reported as fractional differences relative to the ancestral values (Methods). (A) Correlation 1193 
between ∆K and ∆r among all sampled adapted mutants. (B) Correlation between ∆K and 1194 
competitive fitness in the community among all sampled adapted mutants. (C) Correlation 1195 
between ∆K and YYC (yeast yield in community), normalized to ancestral values, among all 1196 
sampled adapted mutants. Error bars show ±1 standard error of the mean. Solid lines are fitted by 1197 
linear regression. P-values are computed by permutation (Methods). 1198 
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Extended Data Figures 1200 

 1201 
Extended Data Figure 1: Per capita net population change for the ancestral yeast and alga. 1202 
Same data as in Figure 1. Error bars show ±1 standard error of the mean.   1203 
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 1204 
Extended Data Figure 2: Frequency trajectories of barcoded lineages in yeast in the A-1205 
condition. Each panel corresponds to a BLT replicate population in the A-condition, as 1206 
indicated. Lineage frequencies were measured at every odd cycle. Twenty random adapted 1207 
lineages are shown in red, and twenty random neutral lineages are shown in blue. 1208 
  1209 
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 1210 
Extended Data Figure 3: Frequency trajectories of barcoded lineages in yeast in the C-1211 
condition. Each panel corresponds to a BLT replicate population in the C-condition, as 1212 
indicated. Notations are as in the Extended Data Figure 2. 1213 
  1214 
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 1215 
Extended Data Figure 4: Distribution of adaptive mutations across the most common 1216 
driver loci. Only driver loci with 5 or more mutations are shown (see Data S3 for the full 1217 
distribution). Colors correspond to Figure 2 in the main text. 1218 
  1219 
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 1220 
Extended Data Figure 5: Probabilities of observing adaptive mutations at the most 1221 
common driver loci in the whole-genome sequencing data. A. Shades of gray show the 1222 
probability of sampling at least one clone with a beneficial mutation that arises at a certain rate 1223 
(x-axis) and provide a certain fitness benefit in the A-condition (y-axis). The most common 1224 
driver loci are shown by points (colors are the same as in Figure 2 in the main text). The 1225 
estimated beneficial mutation rate and the selection coefficient for each mutation class are given 1226 
in Table S3. B. Same as A but for the C-condition. The mutation rate for each locus is assumed 1227 
to be the same in both conditions, but the selection coefficients vary. C. The observed number of 1228 
sequenced clones per replicate population with a mutation at each locus (black points) and the 1229 
numbers expected in our simulations (bars and whiskers). Bars show IQR (Q3 – Q1), whiskers 1230 
show Q1 – 1.5 × IQR and Q3 + 1.5 × IQR. 1231 
 1232 
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 1234 
Extended Data Figure 6: The weighted distribution of yields. The heatmap shows the ratio of 1235 
probabilities DC and DA of observing a given pair of yields among C- and A-mutants. Data 1236 
points are identical to Figure 3B in the main text. To estimate DA and DC, each data point is 1237 
weighted by the frequency of occurrence of the corresponding mutation among the A- and C-1238 
mutants, respectively (see Methods for details). Regions where either DA or DC falls below 0.03 1239 
are colored gray. YYC and YYA are normalized by the respective ancestral values. 1240 
  1241 
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 1242 
Extended Data Figure 7: Correlations between competitive fitness and yields. Normalization 1243 
is relative to the ancestor. Error bars represent ±1 standard error of the mean. 1244 

1245 
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 1246 
Extended Data Figure 8: Representative microscopy image showing lack of physical 1247 
associations between yeast and algae cells. Mutant culture formed by the C-mutant C2 1248 
(barcode ID 109098) is shown. Yeast and alga cells are indicated with arrows. 1249 
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 1250 
Extended Data Figure 9: Relationship between growth rate, yields and fitness. In all panels, 1251 
normalization is relative to the ancestor. Error bars represent ±1 standard error of the mean.  1252 
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 1253 
Extended Data Figure 10: Relationship between carrying capacity, yields and fitness. In all 1254 
panels, normalization is relative to the ancestor. Error bars represent ±1 standard error of the 1255 
mean. 1256 
  1257 
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1 Barcode lineage tracking (BLT) experiment and

data analysis

1.1 Number of yeast and alga generations per cycle

Yeast. The rate at which new mutations arise in a yeast population and the amount
of physical time it takes for these mutations to survive drift and establish depends on the
number generations that yeast go through during our BLT experiment. Thus, if yeast go
through substantially different numbers of generations per cycle between the A- and the
C-conditions, it could cause differences in our power to detect adapted lineages, which
in turn could confound our ability to compare measured bDFEs. In fact, it is possible
that yeast go through different number of generations because they reach different peak
densities and because they likely do not reproduce after Day 2 in the A-condition, but they
likely do reproduce in the C-condition (since the alga supplies the limiting ammonium).

We can estimate the number of generations in the A-condition if we assume that there
is no death during Days 1–2 and there is no growth during Days 2–5. Given that the yeast
starts the growth cycle at 1.37× 104 cells per mL and reaches peak density of 4.72× 106

cells per mL on Day 2 (Figure 1, Data S1), the estimated number of generations per cycle
in the A-condition is 8.4. Knowing that yeast yield in the A-condition is 9.83× 105 cells
per mL, we can also estimate the average per capita death rate in the A-condition in Days
3–5 as 0.52 per day.

We can estimate the number of generations per cycle in the C-condition as follows.
We again assume that there is no death in Days 1–2. Thus, given that the yeast starts
the growth cycle at 2.39×104 cells per mL and reaches peak density of 2.83×106 cells per
mL on Day 2 (Figure 1, Data S1), we estimate the number of generations in this part of
the cycle to be 6.9. To estimate the number of generations in Days 2–5, we assume that
the per capita death rate during this phase of the cycle is the same in the C-condition as
in the A-condition, i.e., 0.52 per day. Thus, in the absence of new births, yeast would have
reached density of 5.95 × 105 cells per mL by the end of the cycle. Instead, we observe
that yeast yield is 8.78× 105 cells per mL, which implies that 2.83× 105 new yeast cells
were produced during this period, corresponding to 0.13 generations. Thus, we estimate
that yeast go through on average 7.0 generations per cycle in the C-condition.

Given that yeast go through fewer generations and generally have lower population
sizes in the C-condition than in the A-condition, we would expect that fewer adaptive
mutations would arise in the C-condition and it would take them longer to spread. How-
ever, we actually detect slightly more adapted lineages in the C-condition than in the
A-condition, suggesting that these differences do not substantially undermine our ability
to identify adapted lineages.

Alga. Since the alga grow continuously during the entire cycle both alone and in
community with yeast, we can estimate their number of generations by assuming that
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there is no death. Given that the alga growing alone starts at density 9.3 × 103 cells
per mL and reaches density 2.6 × 106 cells per mL(Figure 1), we estimate that the alga
goes through approximately 8.1 generations when growing alone. Given that the alga
growing in community with yeast starts at density 4.83 × 104 cells per mL and reaches
density 7.90 × 106 cells per mL, we estimate that the alga goes through approximately
7.4 generations when growing in community.

1.2 Justification for ignoring adaptation in alga

In the C-condition, that is, when yeast and alga are co-cultured together, yeast and alga
reach final yields of 8.78× 106 and 7.90× 107 cells, respectively, with the bottleneck sizes
being by a factor of 100 smaller. Numerous evolution experiments with yeast populations
of comparable or smaller size across various environmental conditions have shown that
adaptive mutations arise and reach high frequencies within 250 generations or less [1, 2,
3, 4, 5]. Although much less is known about the rates of adaptation in Chlamydomonas
reinhardtii, one study reports a failure of the alga (strain CC2344) to adapt within 1000
generations of evolution at the bottleneck size of 105 cells [6]. Another study reports 35%
growth rate gain after 1880 generations of evolution in alga strain CC-503 cw92 mt+ [7]
with a comparable population size to ours and detectable gains appeared only after about
300 generations. Our community BLT experiments last for about 66 algal generations
until adapted yeast mutants are sampled, which is likely insufficient for new mutations
to arise in the alga population. Furthermore, since the environment in our experiment is
well-mixed and there is no evidence for physical associations between the two species (see
Extended Data Figure 8), the only way the alga can modify the environment for yeast is
through the medium. Thus, even if some alga mutants arose during the BLT experiment,
they would not be able to reach high enough frequencies in the population to substantially
alter the medium.

1.3 BLT data analysis

Sanity checks. We performed two “sanity” checks to ensure that our analysis gives
reasonable results. First, mean fitness is expected to monotonically increase over time in
each population. We find that mean fitness does indeed increase monotonically during
the first 11 cycles in all but one populations (Figure S1B). Second, we visually inspected
how well individual lineage trajectories are fitted by equation

xi(t+ 1) = xi(t)e
si−s̄(t)

and found that these fits are generally very good (Figure S1C,D shows typical fits).

Sensitivity of the procedure for detecting adapted lineages with respect to the
choices of parameters. The heuristic procedure for identifying adapted lineages has
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three key parameters: (1) the minimum lineage frequency threshold (set to 10−4); (2) the
expansion factor used to identify neutral lineages (set to 100); and (3) the “SE parameter”
which is the number of standard errors separating the lineage’s fitness from zero required
to call it adapted (set to 2). We tested the sensitivity of our procedure with respect to
the choice of these parameters.

We varied the minimum lineage frequency threshold and the expansion factor by an
order of magnitude in either direction. We find that the number of adapted lineages that
we detect varies primarily with the minimum lineage frequency threshold, as expected
(Figure S2C). However, our claims regarding the differences between the bDFEs in the
A- and C-condition remain reasonably robust (Figure S2A,B). The most sensitive result
is the difference in the width of the bDFEs which disappears when we lower the minimum
lineage frequency threshold, presumably because too many non-adapted lineages are being
falsely called adapted.

We then tested how the SE parameter affects the bDFE median in each condition,
while keeping the other two parameters at their chosen values. We find that the bDFE
median as a function of the SE parameter has a plateau between values 1 and 2 (Figure
S3). When the SE parameter declines below 1, we see a precipitous decline in the bDFE
median, as would be expected from the associated growth in the number of false positives.
When the SE parameter is increased beyond 2, we observe a gradual increase in the bDFE
mean, as would be expected from the associated growth in false negatives. This result
suggests that any choice of the SE parameter within the plateau would be appropriate, as
it would strike a balance between keeping down both false positives and false negatives.

Precision and accuracy of the procedure for detecting adapted lineages. We
developed a simulation framework to quantify the precision and accuracy of our procedure.
We simulated evolution using a population initialized with 100,000 barcoded lineages, of
which 2,000 had already acquired an adaptive mutation prior to the beginning of the
evolutionary simulation. The fitness effects of these mutations per growth cycle were
drawn from a normal distribution, with µ = 0.4 and σ = 0.2. These parameters were
selected to allow for relatively weak adaptation, as a strong adaptation regime would lead
to extinction of many adapted mutants. Observing adaptation in this regime allows us to
get better statistics on the precision and accuracy of our method.

We simulated the evolution of our population iteratively as follows. Given that the
population size of lineage i at the beginning of cycle t is N i

t , by the end of the cycle it
deterministically grows or shrinks to

Ñ i
t+1 = N i

t e
si−ωt .

Here, si is the fitness of lineage i, ωt =
∑

i N
i
t si/

∑
iN

i
t is the mean fitness of the popu-

lation at time t. After growth, we simulate dilution, so that the size of lineage i at the
beginning of cycle t+1 is drawn from the Poisson distribution with parameter Ñ i

t+1. The
initial size N0 of each lineage was drawn from an exponential distribution with mean 100.
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The population was propagated for total 18 growth cycles. Every other cycle, barcodes
were sampled and “sequenced” . We simulate this stochastic process by drawing rit reads
of barcode i from the negative binomial distribution with mean ui = RN i

t/
∑

i N
i
t , and

variance ui (1 + ϵ ui). The total read depth was set as R = 106. The error parameter
ϵ = 0.01 allows for variation greater than the mean and represents systematic sources
of experimental error (gDNA extraction, PRCs, sequencing). The choice of the negative
binomial distribution and parameter ϵ was based on Ref. [8]. We then applied our lineage
calling procedure to these simulated barcode data.

Our procedure identified 2306 lineages as adapted, of which 1413 were true positives
and 893 were false positives (Figure S4). We thus estimate the false positive rate to be
71%, the false positive rate to be 1% and the false discovery rate to be 39%. For the true
positives, the estimated fitness correlates very well with their true fitness (Figure S5A).
The median of the estimated bDFE is lower compared to that of the underlying true
bDFE (0.314 versus 0.406, Figure S5B), presumably due the presence of false positives.
Indeed, 93% (829 out of 893) of the false positives have estimated fitness effects below
the median. As a result, for lineages above the median the FDR is 4.3%, indicating, as
expected, that our procedure captures the higher-fitness lineages very well.

Pre-existing mutations. Some mutations could have arisen prior to the beginning of
the experiment, specifically, prior to splitting the barcoded yeast library between five A
and five C replicates. Such pre-existing mutations cause two issues with the downstream
analysis and interpretation. First, they make it more difficult to identify causal mutations
that increase fitness of adapted lineages. We discuss this problem and how we address
it in Section 3. The second issue is that pre-existing beneficial mutations confound the
inference of bDFEs and their comparison across treatments. Specifically, if multiple lin-
eages (within the same population or in different replicate populations) carry the same
pre-exisiting beneficial mutation and are identified as such, this mutation will be counted
multiple times and will therefore inflate the size of a fitness class in the inferred bDFE.

To diagnose this problem, we note that there are two types of pre-existing mutations.
Those that arose after the transformation that introduced barcodes into our strain (type
I) and those that arose before this transformation (type II). All pre-existing mutations of
type I are linked to different barcodes. Therefore, these mutations can be identified by
comparing barcodes of lineages identified as adapted in different populations. We found
that pairs of populations have on average 416 (15%) adapted lineages with a common
barcode, whereas only 23 (0.8%) would be expected by chance (Figure S8). Barcodes are
more often shared between A populations than other types of population pairs (22% vs
13%, t-test P = 10−10). We suspect that this is because the majority of adapted mutants
have higher relative fitness in the A-condition than the C-condition (Figure 2B in the
main text), such that pre-existing mutations are more likely to reach high frequencies and
be detected in the A-condition. We eliminate pre-existing beneficial mutations of type
I from our bDFE analysis by constructing these distributions from lineages with unique
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barcodes.
The same pre-existing mutation of type II can be linked to multiple barcodes and

is indistinguishable in the barcode data from multiple independently arising mutations.
However, pre-existing mutations of type II can be identified in the genome sequencing
data. As discussed in the methods section on genome sequencing and analysis, we find
no evidence of such mutations, suggesting that they must be rare in our populations.

Additional analyses. The median standard error in our estimates of fitness of adap-
tive mutants was 0.02, and median CV was 0.08 (Figure S1A). The standard deviation of
the bDFEs is much larger, 0.22 for A populations and 0.33 for C populations, suggesting
that there are multiple classes of adaptive mutations available to yeast in both conditions.
We confirm that the observation of a multimodal bDFE is not an artefact of combining
the bDFEs of all replicate C populations (Figure S6). Furthermore, the fitness estimates
have fairly consistent error distributions across all replicate populations (Figure S7).

2 Competitive fitness assays

We obtained barcode frequency data at cycles 1, 2, 3, 4 and 5 (Figure S9). Fitness
estimates of individual lineages were concordant between replicates (Figure S10), with
relatively low estimation errors (Figure S11). Estimated fitness of sampled clones in both
conditions along with errors and confidence intervals are provided in Data S2.

Determining valid clones for further analysis. Of the 581 clones that were pooled
in the competition assays, we filtered out many clones from downstream analysis via a
number of filters. First, clones that were sampled at cycle 17 were excluded from further
analysis, as were clones that lacked a valid fitness measurement in either environment or
had variance in fitness measurement in either environment ≥ 0.5. These filters removed
151 of 581 from consideration, leaving us with 430 clones for further analysis.

Calling adapted clones. We use the competition assay data to call adapted clones.
A clone is called as adapted in a given environment if its estimated competitive fitness in
that environment is more than two standard errors greater than 1 (2.3% FDR based on
normal distribution). We identified 401 clones as adapted in the A-condition (see Data
S2). 221 of them were sampled from the A-condition and we refer to them as the A-
mutants. We identified 402 clones as adapted in the C-condition (see Data S2). 189 of
them were sampled from the C-condition and we refer to them as the C-mutants. There
are 16 clones that are not adapted in either A or C condition, 13 clones that are adapted
in the C-condition but not in the A-condition and 12 clones that are adapted in the A-
condition but not in the C-condition. Of the 16 clones not adapted in either the A or
C conditions, 12 come from lineages determined not to be adaptive in the BLT analysis,
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which we define as our neutral clones (Data S2). The genomes of 215 A-mutants, 181
C-mutants and eight neutral mutants were later sequenced, as described in the Methods
and Section 3.

Relationship between fitness estimated in competition assays and in BLT ex-
periments. The correlation between fitness of adapted mutants (i.e., A- and C-mutants)
estimated in the competition assays and those estimated from the BLT data is reason-
ably good (Figure S12, R = 0.57, P = 8.77× 10−37), but there are also some systematic
differences. Specifically, competition assays over-estimate BLT fitness in the A-condition
and under-estimate it in the C-condition (Figure S12). We discuss possible reasons for
these discrepancies below.

When we place mutants onto the bDFE in the non-home environment (as in Figure
2A in the main text) and when we estimate the probability of sampling a mutation in the
non-home environment (see Section 4), we need to know the BLT fitness of mutants in
their non-home environment. We have no direct measurements of BLT fitness of A- or C-
mutants in their non-home environment, but we do have the non-home fitness estimates
of all mutants in competition assays. However, directly substituting BLT fitness for
competitive fitness would lead to biases due to the aforementioned discrepancies between
the two estimates. To correct for these discrepancies, we linearly regress BLT fitness of
A-mutants against their competitive fitness in the A-condition and we regress BLT fitness
of C-mutants against their competitive fitness in the C-condition (see Figure S12). We
then use these regressions to estimate the BLT fitness of C-mutants in the A-condition
and A-mutants in the C-condition.

Difference in adaptive mutant fitness between conditions. Mutant’s fitness were
called as significantly different between A and C-conditions if the two 95% confidence
intervals did not overlap. We discovered 178 such clones (108 A-mutants and 70 C-
mutants), all of which were adaptive in both environments.

Possible reasons for the slight discrepancy between BLT and competitive fit-
ness estimates. We can think of at least three possible reasons for this discrepancy.
One possible reason is that we use a different set of reference lineages in the BLT experi-
ments and competition assays. It is possible, for example, that some of the lineages that
we use as reference in the competition assay are not in fact neutral in one or both of the
conditions.

Another possible reason is that fitness is weakly frequency-dependent (this is expected
in batch culture experiments [9]). Frequency dependence can manifest itself in a discrep-
ancy between BLT and competition assays because lineages are present at much higher
frequencies in the competition assays than in the BLT experiments. Specifically, the
median frequency of an adapted clone (as defined from the competition analysis) in the
competition assay is 4× 10−4 at the initial time point, whereas the median frequency of

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


an adapted lineage is 3 × 10−6 at the initial time point (the frequency of the adapted
mutant driving the lineage frequency must be even lower since many if not most adapted
lineage also initially contain non-adapted individuals).

A third possible reason is that the media composition in the BLT experiments and
in competition assays could be somewhat different at later stages of the growth cycle
because population compositions are different and the media composition is determined
by the collective metabolism of all variants present in the population.

Given the overall concordance of fitness estimates, we decided that dissecting these
relatively minor effects was not particularly important within the scope of the present
work.

3 Genome sequencing and analysis

Small mutations. The distributions of derived small variants per clone is shown in
Figure S16A and their summary statistics are given in Table S2. These data show that
the majority of small variants detected in the evolved clones are still likely ancestral or
erroneous. We can estimate the expected number of adaptive small variants as follows.
A typical adapted isolate carries 1.18 more mutations compared to an ancestral isolate
(Figures S15, S16, Table S2). However, not all of these mutations may be adaptive.
Indeed, given that small indels and single-nucleotide mutations occur at rate 3×10−3 per
genome per generation [10], we expect 0.18 of such mutations to have occurred on the line
of descent of any isolate sampled at cycle 9 (∼ 60 generations). Based on this estimate,
a typical adapted clone is expected to carry 1.18− 0.18 = 1.00 adaptive mutation.

One potential problem with this estimate is that our yeast strain may have a somewhat
different mutation rate than the strain used in Ref. [10]. We can obtain an alternative
estimate for the number of adaptive mutations per clone by comparing adapted clones
with the neutral ones. We find that a typical neutral clone carries 1.96 ± 0.88 more
mutations than a typical ancestral isolate1 (Table S2), which is greater than 1.18 extra
mutations carried by a typical adapted clone. Thus, it is possible that a typical adapted
clone carries no beneficial small mutations.

The problem with the second estimate is that some of the clones identified as neutral
may in fact carry adaptive mutations2. Therefore, we use both methods to obtain bounds
on the number of adaptive mutations carried by a typical adapted clone and conclude that
a typical adapted clone is expected to carry between 0 and 1 small adaptive mutations.
Carrying out the same calculations for the A- and C-mutants separately, we estimate that
a typical A-mutant carries between 0 and 1.34 small adaptive mutations (so that between

1This number is larger than 0.18 expected based on the yeast mutation rate, but the difference is not
statistically significant (P = 0.08, t-test, expected µ = 0.18).

2This is confirmed by the fact that we find two mutations at driver loci in the neutral clones (see
Figure S16 and Table S2).
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0 and 288 out of 1008 small mutations found in A-mutants are expected to be adaptive),
and a typical C-mutant carries between 0 and 0.61 small adaptive mutations (so that
between 0 and 110 out of 717 small mutations found in C-mutants are expected to be
adaptive; Table S2).

Using genetic parallelism, we identify 185 mutations at 63 loci as adaptive (on average
0.47 mutations per clone), consistent with our expectation. 76 of these mutations at 39
loci are found in 60 A-mutants (on average 0.35 mutations per clone) and 109 mutations
at 56 loci are found in 81 C-mutants (on average 0.60 mutations per clone; Table S2).

Total number of identified adaptive mutations per clone. After combining small
mutations and CNVs together, we find that a typical A-mutant carries 0.74 identified
adaptive mutations with 100 A-mutants having no identified adaptive mutations (Data
S3). A typical C-mutant carries 1.11 identified adaptive mutations with 46 C-mutants
having no identified adaptive mutations (Data S3). Since all A- and C-mutants gained
fitness in their home environment, each of them must have at least one adaptive mutation.
Therefore, the “unknown” sectors in Figure 2C in the main text refers to the numbers of
A- or C-mutants without any identified adaptive mutations.

Pre-existing mutations. We use genetic information to test for the prevalence of
preexisting mutations of type II, i.e., those that arose prior to the integration of the DNA
barcodes, so that multiple lineages may carry an adaptive mutation identical by descent.
If such mutations were prevalent, we would expect to observe an excess of adapted clones
carrying identical genetic mutations, compared to ancestral isolates, but this is not the
case (Figure S15). In fact, an identical small mutation is found less frequently in multiple
adapted clones than in multiple ancestral clones, suggesting that some of the pre-existing
genetic variation may have been deleterious.

CNV events are not suitable for this analysis because they occur at very high rates,
and thus we have no way of ascertaining whether or not two identical CNV events are
identical by descent. Indeed, many CNVs are aneuploidies, which occur at rate 9.7×10−4

per generation [10]. The only consistent segmental CNVs are ChrIV-1n and ChrIV-3n.
ChrIV-1n mutations are localized to identical breakpoints across 64 mutants; these break-
points are concordant with highly similar repetitive regions, YDRWTy2-2/YDRCTy1-2
and YDRWTy2-3/YDRCTy1-3. There are three different classes of ChrIV-3n amplifica-
tions across 10 mutants; at least some of these breakpoints also appear to be localized
close to known repetitive regions, including YDRCTy2-1, YDRCTy1-1 and YDRWTy2-2.
Thus, we suspect that these recombination-driven segmental events also occur at high
rates and are not necessarily indicative of pre-existing variation.
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4 Simulations of evolutionary dynamics and the es-

timation of rates of adaptive mutations

We found that the sets of A- and C-mutants are genetically distinct (Figures 2C in the
main text, Extended Data Figure 4 and Data S4), despite all of them being more fit
than the ancestor in both environments. In this section, we show that this somewhat
puzzling observation can be explained by the differences in the evolutionary dynamics in
the concurrent mutation regime [11].

There are two key differences between the A- and C-conditions. First, the bDFEs
are different (Figure 2A in the main text), resulting in different increases of population’s
mean fitness over time. Second, the fitness rank orders of adaptive mutations are also
different (Figure 2A in the main text). These two facts imply that in the concurrent
mutation regime the chances for a given mutation to escape drift while rare and reach
a certain frequency and be sampled can be substantially different in the two conditions.
Next, we develop a quantitative version of this argument.

As described in Section 3, we classify all discovered adaptive mutations into mutation
classes by the type of CNV or the gene in or near which the mutation occurred (Data
S4). Let kA

im and kC
im be the number of sequenced A- or C-mutants that carry a mutation

from class m sampled from the replicate population i = 1, 2, 3, 4, 5 (see Table S3). We
would like to know whether the differences between kA

im and kC
im can be explained by the

observed differences in the bDFEs and by differences in the fitness benefits provided by
mutations of class m in the A- and C-conditions.

The challenge is that the probability Pr {k; s, U} of observing k mutants of a certain
type in a sample from a given population depends not only on the selection coefficients s
of adaptive mutations of this type (which we have measured, as described in Section 2)
but also on the unknown rate U at which such mutations arise. Therefore, we first find the
mutation rates that fit our data and confirm that these rates are biologically plausible. We
then ask how well the expected numbers of A- and C-mutants carrying specific mutations
match the observed numbers kA

im and kC
im, given the estimated mutation rates.

4.1 Data

Exclusion of pre-existing mutations. A number of lineages are identified as
adapted in multiple populations, indicative of pre-existing mutations of type I (see Meth-
ods for more details). Since such mutations do not carry information about the mutation
rate, we exclude them from this analysis. That is, numbers kA

im, k
C
im given in Table S3

and in Extended Data Figure 5 are the numbers of sampled and sequenced clones with
unique barcodes.

Selection coefficients. Fitness of individual mutants in the BLT experiments are
estimated based on the competition assay data, as described above (see Section 2), and
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selection coefficients sAm and sCm are taken as averages over all mutants carrying a mutation
from a given mutation class (Table S3).

Mean fitness trajectories. Our model described below takes into account the fact
that the probability of a newly arisen beneficial mutation to survive genetic drift depends
on how the mean fitness of the population changes over time. Thus, when simulating the
evolutionary dynamics, we use the empirical mean selection coefficient trajectories s̄A(t)
and s̄C(t) in the A- and C-conditions, respectively. s̄A(t) and s̄C(t) are computed by first
averaging the values of the mean selection coefficient (estimated in as described in the
Methods) over all five replicates and then fitting the logistic function to these data points
(see Figure S1B).

4.2 Model

To keep the model as simple as possible, we assume that our population has the constant
size N = 2× 106 in both A- and C-conditions, mutations from the mutation class m arise
at (an unknown) rate Um per division in both conditions. We assume that all mutation
from class m confer the same (known) fitness benefits sAm and sBm relative to the ancestor
in the A- and C-condition, respectively (Table S3). We also assume that all mutants are
sampled at time T = 60 generations after the beginning of the experiments in both A- and
C-conditions, which roughly corresponds to cycle 9, assuming log2 100 = 6.64 doublings
per cycle (see Methods).

To estimate the mutation rate Um for mutation class m we define the log-likelihood
function

L(Um) =
1

5

5∑
i=1

log Pr
{
kA
im; s

A
m, Um

}
+

1

5

5∑
i=1

log Pr
{
kC
im; s

C
m, Um

}
. (1)

The sampling probability Pr {k; s, U} depends on the number of lineages that indepen-
dently arose in the population and that carry a mutation of the focal type, as well as on
the frequencies of these lineages at the sampling time point T . It is difficult to obtain
an analytical expression for this probability because it requires integrating over all these
nuisance parameters. We therefore compute the sampling probability numerically, using
population dynamic simulations described below.

4.2.1 Evolutionary dynamics simulations and the estimation of the sampling
probability

As mentioned above, difference in the bDFE between the A- and C-conditions may con-
tribute to the observed differences in the genetic composition of sampled mutants. The
bDFE indirectly affects the survival probability of a newly arisen beneficial mutation by
altering how the mean fitness of the population changes over time. Thus, we design our
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simulations so that they match the average empirical mean selection coefficient trajecto-
ries in the A- or C-condition (see Methods and Figure S1B). Matching these trajectories in
simulations of the full Wright-Fisher where all mutation classes segregate simultaneously
is difficult. Instead, we simulate the arrival and spread of mutations of each mutation
class separately, while accounting for changes in mean fitness using our logistic fit of
the observed mean fitness trajectories (Figure S1B). This approach also allows us to use
branching process approximations described below in Section 4.2.2, which greatly speed
up the calculations.

Since in this section we are concerned with mutants of one mutational class in one
environment, we omit the subscript m and superscripts A/C. In other words, we assume
that the mutations arrive at rate U per individual per generation and have selection
coefficient s, and we sample 88 mutants from this population at time point T = 60.

In our simulations, we allow for new mutations to arise between 1 cycle prior to the
beginning of the experiment up to cycle 9. Thus, we divide the time interval between −6.6
and T = 60 generations into 260 to 1300 segments of length ∆t = 0.01/s generations.
For each time segment (ti, ti + ∆t), we draw the number of new mutants arising in the
population in that segment from the Poisson distribution with rate N U ∆t. Each of these
mutants survives until the sampling time point T with probability Psurv(T ; s, ti), given
by equation (2) below. For each mutant that survives, we draw its establishment time τ
from the distribution given by equation (3) below. We then set the mutant’s frequency
at the sampling time point to n(T ; sm, τ)/N , where n is given by equation (4) below.
At the end of each simulation run, we obtain a list of frequencies of all independently
arisen mutants carrying mutation of type m. We assume that each independently arisen
mutants is linked to a distinct barcode. We then randomly sample 88 clones from the
whole population and discard those that do not carry the focal adaptive mutation. If
multiple clones are sampled from the same lineage, only one is retained. We further
randomly sub-sample these clones with 97.5% success probability, simulating the small
whole-genome sequencing failure rate, which results in the final number k of sampled
clones that carry a mutation from the focal mutation class. We estimate the probability
of sampling k clones, Pr {k; s, U}, by running 104 simulations and recording the fractions
of simulations where we observe k sampled clones.

4.2.2 Branching process approximations for mutant growth dynamics

Consider a mutant that arises at some point t0 < T on the ancestral background. The early
population dynamics of such mutant lineage can be modeled as a branching process [11].
In particular, Desai and Fisher [11] used the branching process approximation to derive
the probability that a mutant with selection coefficient s that arose at time zero in the
ancestral population (i.e., whose mean selection coefficient is zero) has not gone extinct by
time t and the related probability that the mutant “establishes” at time τ (see equations
(11) and (17) in Ref. [11]). However, this model ignores the fact that the mean fitness of
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the population is changing over time while the focal mutant is still at low frequency. In
our experiment, mean fitness changes very rapidly, as can be seen in Figure S1B, which
can significantly alter mutant’s survival probability and its establishment time. Assuming
that the mean selection coefficient trajectory s̄(t) is known (see Section 4.1), we can model
mutant dynamics analogous to Ref. [11] but with a generalized birth-death model with
growth rate 1 + s − s̄(t) and death rate 1. In this model, the probability that a mutant
that arose at time t0 survives until time t is given by

Psurv(t; s, t0) =
ω(t0)

1 + ω(t0)− e−ρ(t,t0)
, (2)

where

ω(t) = s− s̄(t),

ρ(t, t0) =

∫ t

t0

ω(t′) dt′,

provided that ω(t0) > 0. Conditional on surviving, the probability that this mutant
establishes at time τ is given by

Pest(τ ; s, t0) =
ω(t0)

1 + ω(t0)
exp

[
−ρ(τ, t0)−

e−ρ(τ,t0)

1 + ω(t0)

]
. (3)

Once the mutant establishes at time τ and provided that it is still beneficial, i.e., ω(τ) > 0,
its subsequent dynamics are essentially deterministic, so that its size n(t; τ) at time t is
approximately given by

n(t; s, τ) =
eρ(t,τ)

ω(τ)
, (4)

which is analogous to equation (14) in Ref. [11] in the limit t ≫ 1/s.

4.2.3 Estimation of mutation rates by maximum likelihood

For each mutation class m, we compute the likelihood function L(Um) using equation (1)
for 40 discrete values of um = log10 Um between −7 and −3 and interpolate between them
using a polynomial of degree 4. The likelihood function for chrIII-3n mutations is shown
as an example in Figure S17. We find the maximum of this function as a point where
the polynomial approximation of L has a zero first derivative with respect to um. We
estimate the standard error (SE) as the inverse of the square root of Fisher information
[12].
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4.3 Results

We estimated the rates of driver mutations at 9 loci that were mutated in at least five
adapted clones, after excluding gene NUM1 where all mutations are likely pre-existing (see
Extended Data Figure 4, Table S3 and Data S4). Our estimates are generally consistent
with those derived from a published mutation accumulation experiment by Zhu et al
[10]. In particular, our estimate of the rate of small adaptive mutations in genes HEM1
and HEM2 is ∼ 3 × 10−7 per generation, consistent with per basepair mutation rate of
1.67×10−10 estimated by Zhu et al [10]. Gene YIL169C is an exception, with an estimated
rate of adaptive point mutations of 7.76× 10−6 per generation. We estimate the rates of
large CNV events to be ∼ 10−5 per generation, again consistent with the genome-wide rate
of aneuploidies of 1.04× 10−4 estimated by Zhu et al [10]. Our estimate of the segmental
duplications ChrIV-3n is much lower (3.24 × 10−7 per generation), also consistent with
Ref. [10], although they do not provide a quantitative estimate of such events.

The probability that at least one sequenced mutant from all five replicate populations
has a mutation with a given selection coefficient s and mutation rate U is shown in
Extended Data Figure 5A,B, for both A- and C-conditions. As expected, this function is
different between conditions because the mean fitness dynamics are different (Figure S1B).
Finally, we directly compare the observed numbers of mutations of each mutation class
with the expected numbers in the A- and C-conditions and find a reasonable match
(Extended Data Figure 5C).

5 Phenotyping

5.1 Calibration curve for the measurement of alga cell density

We generated a calibration curve for interpreting fluorescence measurements in terms
of alga cell number as follows. We grew alga in our standard growth conditions both
alone and in a community with the ancestral yeast. On each day of the growth cycle,
we counted alga cells using a haemocytometer and we took a fluorescence measurement
using the a plate reader, as described in Methods. In addition, we generated a 2-fold
dilution series starting with the saturated alga cultures at the end of the growth cycle both
alone and in the community. We also obtained haemocytometer counts and fluorescence
measurements for the alga grown in a 59 mutant communities (see Methods in the main
text). We combined all these data to obtain a single the calibration curve by plotting
the fluorescence against haemocytometer counts, both log-transformed (Figure S18). We
found a good positive correlation (R = 0.96). We used the following equation to convert
fluorescence measurements into cell density,

log(Cell density) = 1.236× log(Fluorescence)− 2.843.
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5.2 Analysis of plausibility of natural selection favoring high-
K/low-r mutants

Our measurements of r and K for the adapted yeast mutants suggest that the increases in
K at the expense of r and increases in r at the expense of K can both be adaptive in both
A- and C-conditions. Theory suggests that high-K mutants can be favored by natural
selection when the population is close to starvation [13, 14], but mutants with higher K,
and especially those with lower r, are rarely found in evolution experiments. We therefore
wanted to test whether the mutants with our measured r and K values (especially those
with higher K and lower r than the wildtype) can plausibly invade the wildtype yeast
population.

To this end, we constructed a simple coupled logistic growth model. We consider two
strains, strain 1 (wildtype) and strain 2 (mutant) whose per capita growth rates are ri and
carrying capacities are Ki, i = 1, 2. The dynamics of the population sizes Ni (i = 1, 2)
are then described by equations

dN1

dt
= r1N1

(
1− N1 +N2

K1

)
,

dN2

dt
= r2N2

(
1− N1 +N2

K2

)
.

We set r1 = 0.168 h−1 andK1 = 5.5×106 for the wildtype and we set the mutant values
r2 and K2 based on our measurements given in Data S2. We set the initial population
sizes of the wildtype and mutants to be 104 and 102 individuals, respectively, and simulate
the growth of these strains for 120 hours (the length of our standard growth cycle). We
determine that a mutant can successfully invade if its frequency increases by the end of
the growth cycle.

If our model perfectly captured our experimental conditions, all of the mutants would
be able to invade, since all of them are experimentally found to be more fit than the
wildtype. In fact, we find that only 37 out of 59 (63%) mutants are able to invade
(Figure S22). As expected, five mutants that have both r and K lower than the wildtype
could not invade in our model. Similarly, eight mutants with higher K but low r and nine
mutants with higher r and lower K could not invade, suggesting that our model does not
capture some processes and traits that are likely important in our experiment (e.g., it
does not capture the dependence of growth and death rates on resource concentrations).
Nevertheless, 16 out of 24 mutants with higher K and lower r are able to invade the
wildtype in this simple model, which supports our argument that selection can favor high
K in our conditions even if it comes at the expense of decreasing r.
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5.3 Relationship between r, K and fitness

As described in the main text, we found that each r or K individually explain about 26%
of variation in competitive fitness in the C-condition but do not explain any statistically
significant variation in the A-condition. However, it is possible that a linear combination
of both variables would improve our ability to predict fitness in both conditions. To this
end, we consider a multiple regression model Fitness ∼ r+K. We report the results of this
regression analysis in Table S4. We find that r and K jointly do not explain any variation
in fitness in the A-condition, but they jointly explain 37% of variation in fitness in the
C-conditions, which is significantly more than each of them explains individually. Both r
and K contribute approximately equally to fitness. Furthermore, we find that decreasing
r increases fitness even if K is being held constant. This surprising observation could
be explained if one or more unobserved traits (other than r and K) were important for
competitive fitness and if there was a trade-off between r and such unobserved trait.

6 Possible function effects of mutations in HEM1,

HEM2 and HEM3 genes

Three critical components of the heme biosynthesis pathway, HEM1, HEM2 and HEM3
are putative targets of adaptation in this study, and provide a substantially larger fitness
benefit in the C-condition than in the A-condition (see Data S3 and Data S4). Most muta-
tions found in these genes probably compromise the function of the encoded enzymes and
lead to a decreased “siphoning” of succinyl-coenzyme A (sCoA) from the TCA cycle and
the production of less heme and/or decoupling of aerobic-driven regulation from aspects
of central metabolism. Although yeast is already capable of performing fermentation un-
der ambient oxygen concentration, we speculate that these mutations enables yeast to
ferment under even higher oxygen concentrations that results from alga photosynthesis.

6.1 HEM1

HEM1 encodes the mitochondrial 5-aminolevulinate synthase (ALAS) that catalyzes the
first committed step of porphyrin through the condensation of glycine and sCoA using
the cofactor pyridoxal 5’-phosphate (PLP):

sCoA + glycine + PLPcofactor 5-aminolevulinate + CoA + CO2 + PLPcofactor

ALAS links heme/cytochrome production with the TCA cycle and aerobic respiration via
sCoA, and thus plays a key role in cellular energetics [15]. ALAS functions as a homodimer
(with subunits referred to as A and B below). A crystal structure of S. cerevisiae HEM1
is available (https://www.rcsb.org/3d-view/5TXR/1).
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We found 5 adaptive mutations in the HEM1 gene, four of which occurred in the
C-mutants (Data S3 and Data S4). A nonsense mutation at residue 166 (out of 548) in
HEM1/ALAS leads to a truncated coding sequence and presumably loss of function. All
other mutations alter amino acids that are conserved in all sequenced S. cerevisiae strains,
which we speculate may also significantly compromise normal HEM1/ALAS function, as
described below.

His107Pro mutation does not seem to be involved in any substrate or co-factor binding
directly, but a change from histidine to a proline, with significant backbone confirmational
constraints may have serious consequences for the folding (and thus function) of the
enzyme. Bracketing this position (107) nearby is Arg91, which plays a critical role in
sCoA binding, and Asn121, which forms an alpha-carboxylate hydrogen bond with the
glycine substrate [16]. Moreover, His107 (of subunit B) forms important structurally
stabilizing side-chain interactions with Glu111 (subunit B) and Lys142 (subunit A) (see
Figure S3 of [16]), which may very well be disrupted with a proline substitution (lacking
a side chain).

Asn152Lys and Asn157Lys mutations occur in a region of the ALAS protein that
becomes ordered upon PLP cofactor binding. N152 plays a direct role in coordinating
sCoA [16], hydrogen bonding with the carboxylate (COO-) moiety of the sCoA succinyl
group. Mutation from asparagine to a positively charged lysine may both disrupt the
formation of this hydrogen bond and prevent a key side-chain interaction between Asn152
(subunit A) and Arg91 (subunit B) that stabilizes key structural elements needed for
PLP cofactor binding (we expect the side chain of mutation Lys152 to repel that of
Arg91 since both are positively charged). Asn157Lys is a few amino acids downstream
from Ile153, which also plays a role in carboxylate/sCoA coordination like Asn121 [16].
Asn157 is adjacent to Ile158 (subunit A) that forms stabilizing main-chain and side-chain
interactions upon PLP cofactor binding with Asn95 and Asn 97 (both on subunit B);
mutation to Lys may disrupt these interactions, along with that of nearby stabilizing
interactions between Arg98 (subunit B) and Ala147 (subunit A), due to positive charge
repulsion between Arg98 and Asn157Lys (see Figure S3 of [16]).

Gly344Cys mutation occurs at a site that does not directly bind substrate or co-factor
but is each bracketed by amino acids that do play key active site roles and could also have
structural consequences as conformational flexibility is likely lost with the change away
from glycine. Gly344 is flanked (although several amino acids away) by K337 that forms
a critical covalent pyridoxyl-lysine bond, and F365 which delineates the sCoA substrate-
binding pocket [16]. Gly344 resides on the juncture between a beta-sheet and alpha-helix
motif in the protein structure, with little space for a side chain. Mutation of this site
to a cysteine may alter backbone flexibility and the folding of key structural elements.
Gly344 is also in close proximity to Cys182 that forms stabilizing hydrogen bonds with
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amino acids Asn129, Thr275, and Gly 276; having another cysteine nearby may very likely
interfere with that hydrogen bonding network.

6.2 HEM2

HEM2 encodes for the cytoplasmic/nuclear, homo-octameric aminolevulinate dehydratase
(ALAD; porphobilinogen synthase), which catalyzes the second step in heme biosynthesis:

5-aminolevulinate porphobilinogen + 2H2O

A crystal structure of S. cerevisiae HEM2 is also available (https://www.rcsb.org/
3d-view/1AW5/1).

We found 5 adaptive mutations in the HEM2 gene, four of which also occurred in
the C-mutants (Data S3 and Data S4). Two frame-shift mutations lead to premature
stop codons ∼ 100 out of 342 amino acids. The three remaining mutations Ile129Phe,
Val132Phe, and Pro264Arg are predicted to have moderate impact.

Ile129 resides on a beta-strand with a side chain embedded in a relatively hydrophobic
environment. It is unclear what the consequences of mutation Ile129Phe might be, as
phenylalanine is a comparably bulky hydrophobic side chain to isoleucine that would at
first glance seem to be a conservative substitution [17]. However, several aromatic amino
acids are in the vicinity, including Trp30 and Tyr127; Ile129Phe may form aromatic ring-
stacking interactions with these residues to disrupt fold structure.

Val132 is similarly on a beta-strand with a side chain embedded in another nearby
hydrophobic pocket and interface with other non-polar amino acids on alpha-helix. The
Val132Phe mutation could disrupt the tight packing at this interface as phenylalanine
is substantially bulkier than valine. Moreover, Tyr168 is nearby which hydrogen bonds
a key water molecule that is hydrogen-bonded to several other backbone atoms flank-
ing Val132; the Val132Phe mutation may also disrupt this by interacting with Tyr168
through aromatic stacking interactions. Pro264 resides in a sharply kinked beta-turn
between beta-strand and alpha-helix elements, which may be important for constraining
and enabling key interactions of flanking residues with amino acids distributed across dif-
ferent structural elements: Val262/Ser265/Tyr287, Ser265/Glu292, and Lys263/Tyr287
(see https://www.rcsb.org/3d-view/1AW5/1).

Pro264Arg mutation is pronounced not just for the loss of backbone constraint pro-
vided by the imino acid proline [17], but it introduces a large positively charged side
change that may form “inappropriate” interactions to disrupt monomer fold and subse-
quently oligomerization; these include interactions with nearby: negatively charged amino
acids: Glu292 and Glu313 aromatic amino acids (through cation-pi interactions) Phe211
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(normally interacting with Tyr268 via aromatic stacking), Tyr216 (normally interacting
with the backbone of Phe211), Tyr268 (normally interacting with Glu313), and Tyr287
(normally interacting with Lys263 via cation-pi interactions).

6.3 HEM3

HEM3 encodes for the cytoplasmic/nuclear enzyme, porphobilinogen deaminase/hydroxy-
methylbilane synthase (HMBS), which catalyzes the third step in heme biosynthesis in-
volving four molecules of porphobilinogen to make a linear hydroxymethybilane molecule
that looks like a heme/tetrapyrole when “wrapped around”:

4 porphobilinogen + H2O hydroxymethylbilane + 4NH3

We found 4 adaptive mutations in the HEM3 gene, three of which occurred in the C-
mutants (Data S3 and Data S4). However, since no structure exists for S. cerevisiae
HEM3 protein and since the homology with the human ortholog for which the structure
does exist (https://www.rcsb.org/3d-view/5M6R/1) is rather low (∼ 40% similarity),
predicting the functional effects of these mutations is challenging.

7 Data availability

All raw sequencing data is available on the US National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (SRA) under BioProject PRJNA735257. Other
input data (e.g. growth data, variant calls, community yield etc) and analysis scripts can
be found on Dryad at

https://doi.org/10.6076/D14K5X.

The latest version of the barcode counting software BarcodeCounter2 can be found at

https://github.com/sandeepvenkataram/BarcodeCounter2.git.
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8 Supplementary Figures
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Figure S1. Estimation of fitness of adapted lineages in the BLT data. A. The mean
lineage fitness (x-axis) is plotted against the coefficient of variation (CV) of the estimate
(y-axis). Blue (red) points indicate lineages identified as adapted (non-adapted). B. Mean
fitness of each population over time. Individual populations are shown in grey, the average
mean fitness trajectory over all populations is shown in black, and a logistic fit to this average
trajectory is shown in red. C, D. Examples of selection coefficient estimation for one lineage
in one A population (C) and one C population (D).
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Figure S2. Analysis of sensitivity of the procedure for calling adapted lineages
with respect to the minimum frequency threshold and the expansion factor. A.
Sensitivity of the difference in the bDFE means. B. Sensitivity of the difference in the bDFE
interquartile interval (IQR). C. Number of called adapted lineages as a function of the
minimum frequency threshold and the expansion factor. The red square on each panel
highlights the parameter regime used for all of our remaining analyses.
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Figure S3. Analysis of sensitivity of the procedure for calling adapted lineages
with respect to the SE parameter. Median of the pooled bDFE as a function of the SE
parameter.
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Figure S4. Precision and accuracy of the procedure for calling adapted lineages.
The panels show the frequency trajectories of simulated lineages classified by our heuristic
procedure (see Section 1 for details).
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Figure S5. Accuracy of BLT fitness estimates and the shape of the bDFE. A.
Relationship between the true fitness of a lineage (x-axis) and its fitness estimated from a
simulated BLT experiment (y-axis; see Section 1 for details). The solid line shows the
diagonal. The correlation coefficient and the associated P -value are calculated only for the
true positives. B. True and estimated bDFEs.
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Figure S6. bDFEs estimated for replicate populations individually. The blue dashed
line shows the pooled bDFE in the same condition (same as in Figure 2A).
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Figure S7. Distributions of standard errors for fitness estimates of adapted
lineages for all replicate populations.
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Figure S8. Evidence for pre-existing mutations in the BLT experiments. For each
population on the x-axis, we plot the fraction of lineages identified as adapted in that
population which are also identified as adapted in every other population (y-axis, black points)
as well as the expectation for this fraction (red points). The expected overlap between
populations i and j is calculated by comparing the observed adaptive lineages in population i
to a random set of lineages from population j that reach detectable frequency. All lineages are
considered equally for sampling.
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Figure S9. Lineage frequency trajectories in the competition assay. Reference
lineages are shown in green, all other lineages are shown in orange.
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Figure S10. Correlation between fitness estimates across replicates of the
competition assay. Line shows the diagonal.
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Figure S11. Mean and the coefficient of variation of the fitness estimates in the
competition assay.
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Figure S12. Correlation between BLT and competitive fitness estimates. Solid and
dashed lines show linear regressions for the A-mutants (in the A-condition) and C-mutants (in
the C-condition), respectively.
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Figure S13. An example illustrating the detection of large CNVs in the genome
sequence data. A. 1kb-window coverage plot for clone 386817 from population C1. B. Same
data, after normalization using the relationship between coverage and chromosomal position
shown in Figure S14. C. Focusing on chrIV to manually identify breakpoints for the chrIV-1n
mutation (red lines).

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


Figure S14. Relationship between coverage and chromosome position. Mean
coverage in 1kb windows for clone 386817 from population C1 is shown vs distance of locus
from the end of a chromosome.
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Figure S15. Allele frequency spectrum for ancestral and adapted isolates. Each bar
shows the number of small mutations (point mutations and small indels) found in a given
number of ancestral or adapted clones. The distribution for adapted clones is averaged over
1000 random draws of 24 clones.
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Figure S16. Distribution of mutations per clone. A. Number of small mutations
detected per sequenced isolate. Triangles on the x-axis indicate the means of each distribution
(see also Table S2). B. Distribution of the number of identified adaptive small mutations per
isolate. C. Distribution of the number of CNVs per isolate.
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Figure S17. Estimation of the rate of beneficial mutations. The log-likelihood
function for the estimation of the chrIII-3n beneficial mutation rate is shown as an example.
Red point indicates the identified maximum value. Horizontal red bar shows the standard
error calculated based on Fisher Information.
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Figure S18. Calibration curve for the alga cell density estimation. y-axis shows the
natural logarithm of density of alga cells measured by haemocytometer, x-axis shows the
natural logarithm of chlorophyll fluorescence. The measured alga cultures were obtained either
from growth curve experiments (red) or from a serial dilution experiment (blue; see Section 5.1
for details). The black line shows the regression line used for converting chlorophyll
fluorescence measurements into cell density estimates.
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Figure S19. Correlation between yield measurements across replicates. The solid
line shows y = x. Normalization is calculated relative to the ancestral strain.
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Figure S20. Mutant growth curves in the A-condition. Growth curves for the 59
adapted yeast mutants are shown, from which r and K values are estimated as described in
Methods in the main text. A. Replicate 1. B. Replicate 2.
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Figure S21. Correlation between replicates for r and K measurements.
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Figure S22. Mutant invasion analysis. Yeast mutants that are able to invade the
wildtype population in the logistic growth simulations are shown in red, those that are not
able to invade are shown in blue (see Section 5.2 for details).
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9 Supplementary Tables

Measurement Day Yeast Alga

Absolute
abundance
(Figure 1)

0 10−3 3× 10−3

1 6× 10−4 8× 10−4

2 3× 10−3 5× 10−5

3 10−5 9× 10−4

4 0.05 10−5

5 0.73 10−5

Growth rate
(Extended Data

Figure 1)

0-1 0.07 0.03
1-2 7× 10−5 0.85
2-3 0.85 10−4

3-4 5× 10−4 10−3

4-5 0.97 0.07

Table S1. P -values for comparison of absolute abundances and net population
change rates across conditions. P -values are obtained from t-tests and corrected for
multiple testing using the Benjamini-Hochberg procedure.
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Isolates Small variants CNVs
Adaptive

Type Number Total Per isolate Expected Identified Total Per isolate
Ancestral 24 76 3.17± 0.51 – 3 0 –
Neutral 8 41 5.13± 0.72 – 2 0 –
A-mutants 215 1008 4.69± 0.20 (0, 288) 76 84 0.39± 0.04
C-mutants 181 717 3.96± 0.22 (0, 110) 109 92 0.51± 0.04
Total 428 1842 – – 190 176 –

Table S2. Statistics of mutational counts among sequenced isolates.
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Condition R2 P βr Pr βK PK

A 0.067 0.14 0.15 0.72 0.73 0.05
C 0.374 2× 10−6 −0.81 0.002 0.72 0.002

Table S4. Multiple regression analysis of fitness against life-history traits. βr and
βK are standardized regression coefficients for r and K, respectively. Pr and PK are P -values
indicating whether adding r or K to the model significantly improves the fit above and beyond
the single-variable model.
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