SHORT REPORT

Cytoskeleton, October 2011 68:555–565 (doi: 10.1002/cm.20533) © 2011 Wiley Periodicals, Inc.

A Unified Taxonomy for Ciliary Dyneins

Erik F. Y. Hom,^{1,2} George B. Witman,³ Elizabeth H. Harris,⁴ Susan K. Dutcher,⁵ Ritsu Kamiya,⁶ David R. Mitchell,⁷ Gregory J. Pazour,⁸ Mary E. Porter,⁹ Winfield S. Sale,¹⁰ Maureen Wirschell,¹⁰ Toshiki Yagi,¹¹ and Stephen M. King¹²*

Received 17 June 2011; Revised 7 September 2011; Accepted 9 September 2011 Monitoring Editor: Pekka Lappalainen

The formation and function of eukaryotic cilia/flagella require the action of a large array of dynein microtubule motor complexes. Due to genetic, biochemical, and microscopic tractability, Chlamydomonas reinhardtii has become the premier model system in which to dissect the role of dyneins in flagellar assembly, motility, and signaling. Currently, 54 proteins have been described as components of various Chlamydomonas flagellar dyneins or as factors required for their assembly in the cytoplasm and/or transport into the flagellum; orthologs of nearly all these components are present in other ciliated organisms including humans. For historical reasons, the nomenclature of these diverse dynein components and their corresponding genes, mutant alleles, and orthologs has become extraordinarily confusing. Here, we unify Chlamydomonas dynein gene nomenclature and establish a systematic classification scheme based on structural properties of the encoded proteins. Furthermore, we

Additional Supporting Information may be found in the online version of this article.

Abbreviations used: DC, docking complex; HC, heavy chain; IC, intermediate chain; IFT, intraflagellar transport; LC, light chain; LIC, light intermediate chain; LRR, leucine-rich repeat; NDK, nucleoside diphosphate kinase.

*Address correspondence to: Stephen M. King, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305. E-mail: king@neuron.uchc.edu

Published online 22 September 2011 in Wiley Online Library (wileyonlinelibrary.com).

provide detailed tabulations of the various mutant alleles and protein aliases that have been used and explicitly define the correspondence with orthologous components in other model organisms and humans.

© 2011 Wiley Periodicals, Inc.

Key Words: *Chlamydomonas*, cilia, dynein, flagella, microtubule

Introduction

The assembly and motility of eukaryotic cilia and flagella $oldsymbol{1}$ require the action of a large array of dynein microtubule motor complexes. These enzymes display distinct motile properties [Kagami and Kamiya, 1992; Moss et al., 1992a, 1992b; Sakakibara and Nakayama, 1998] and contain one or more heavy chain(s) (HCs; ~500 kDa) that exhibit ATPase and microtubule motor activity. In addition, the dynein HCs are associated with a complex array of smaller polypeptides that are necessary for motor assembly, regulation, and attachment to the appropriate cargo [reviewed in King and Kamiya, 2009]. Due to the ease of genetic and biochemical analyses, a cell architecture that allows clear observation of flagellar movement, and a sequenced genome [Merchant et al., 2007], the biflagellate green alga Chlamydomonas reinhardtii has become the premier model system in which to dissect the role of dyneins in axoneme-based motility and in the assembly of cilia/flagella.

Chlamydomonas expresses 16 dynein HCs that form a series of motor complexes with different functions. The outer

¹Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts

²FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts

³Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts

⁴Department of Biology, Duke University, Durham, North Carolina

⁵Department of Genetics, Washington University School of Medicine, St. Louis, Missouri

⁶Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan

⁷Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, New York

⁸Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts

⁹Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota

¹⁰Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia

¹¹Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Tokyo, Japan

¹²Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut

dynein arm, containing three distinct HCs, is required for high power output by the flagellum [Piperno and Luck, 1979; Pfister et al., 1982; Brokaw, 1999]. Two different general types of inner dynein arms, one containing a HC heterodimer and a second consisting of monomeric HC species, are needed to define the waveform [Brokaw and Kamiya, 1987; Kamiya et al., 1991] and/or for beating under high viscous load [Yagi et al., 2005]. Finally, a homodimeric dynein (here, termed the intraflagellar transport [IFT] dynein) powers retrograde IFT and is thus necessary for assembly and maintenance of the organelle [Pazour et al., 1999; Porter et al., 1999]. Although C. reinhardtii contains a large complement of flagellar dyneins, its genome does not encode most of the components comprising the conventional cytoplasmic dynein 1/dynactin system that in other organisms (such as mammals) is required for a wide array of microtubule-based intracellular transport activities [Pfister et al., 2006; Merchant et al., 2007; Wickstead and Gull, 2007]; the exceptions are certain light chains (LCs) employed by both conventional cytoplasmic dynein and other dynein subtypes [King et al., 1996; Harrison et al., 1998; Bowman et al., 1999].

To date, a total of fifty-four gene products have been identified in C. reinhardtii as integral components of these dynein motors or as factors required for their assembly in the cytoplasm, transport into the flagellum, and/or localization within the axonemal superstructure [see Cole, 2009; King and Kamiya, 2009 for reviews]. These proteins have been identified by numerous laboratories over many years utilizing a variety of methods including genetic analysis of mutants with defective flagella, direct protein biochemistry, and, more recently, comparative genomic approaches. As a result, the genes, their encoded proteins and mutant strains have been given a wide variety of names derived from various nomenclature schemes. The resulting plethora of terms and aliases has become unwieldy and complicated. Moreover, the nomenclature of the orthologous dynein components in other species is often quite distinct from that used in C. reinhardtii, and this continues to engender considerable confusion in the literature, and in some cases has led to the misidentification of gene products.

Historically, this general problem derives, at least in part, from the fact that many *C. reinhardtii*, sea urchin¹ and *Tetrahymena thermophila* dynein proteins were given alphanumeric assignments based on the order of their migration in SDS and/or urea polyacrylamide gels many years before any of the sequences were known. Thus, differences in migration patterns due to minor variations in size, sequence and/or charge resulted in orthologous proteins being given com-

pletely different designations. Unfortunately, the issue was compounded during annotation of the mouse and human genomes when certain dynein genes were named after their C. reinhardtii counterparts whereas others followed the sea urchin protein nomenclature. For example, mammalian DNAL4 was named after the LC4 component of the sea urchin outer arm dynein which is orthologous to C. reinhardtii LC10; confusingly, in C. reinhardtii LC4 denotes a calmodulin homolog and thus a member of a completely unrelated protein family. Conversely, mammalian DNAL1 was named after the C. reinhardtii outer arm dynein leucine-rich repeat protein LC1 (the sea urchin ortholog of which is termed LC2 in one nomenclature scheme), whereas sea urchin LC1 is a member of the Tctex1/Tctex2 protein family. This level of confusion also extends to the HCs where, for example, the gene for the 1α HC of inner arm dynein I1/f is DHC1 in C. reinhardtii, DNAH10 in sea urchins and mammals and DYH6 in T. thermophila, while the 1β HC of that same dynein is termed DHC10 (C. reinhardtii), DNAH2 (sea urchins and mammals), and *DYH7* (*T. thermophila*).

Given the long history of these names in dynein research combined with the complexity of the gene families and the large variety of organisms involved, there seems to be no way of synthesizing a gene nomenclature/ numbering scheme that is completely consistent across a broad phylogenetic spectrum and incorporates all the major model organisms while still maintaining continuity with the older literature. Consequently, as part of a reannotation effort for the C. reinhardtii genome, we describe in this report a new consensus nomenclature for dynein genes in C. reinhardtii. Furthermore, we provide a series of tables that indicate (i) the various gene aliases, and mutant and protein names that have been used in C. reinhardtii and (ii) the identity of the orthologous components in a variety of other model organisms where that correspondence can be unambiguously defined.

The Nomenclature

Here, we propose new names for the *C. reinhardtii* dynein genes. The formal standard for gene names in *C. reinhardtii* is a three-letter root (all capitals) followed by a number [Dutcher and Harris, 1998]. As the dynein genes encode a wide range of protein structural and functional types, we have employed these features, as far as possible, to form the basis of the new nomenclature. A list of the proposed dynein gene roots and their derivation is provided in Table I. The assignment of new gene names, the older gene indicator(s) used in previous annotations of the *C. reinhardtii* genome, the accession number and the encoded protein products are tabulated in Table II. Whenever possible, the proposed gene names are based on previous names; e.g., *DHC1–DHC11* are unchanged. The nomenclature scheme also provides a rational basis for the

■ 556 Hom et al. CYTOSKELETON

¹Multiple species of sea urchin have been used for biochemical studies by different laboratories depending on geographic and seasonal variables. The most commonly employed include: Anthocidaris crassispina, Arbacia punctulata, Hemicentrotus pulcherrimus, Lytechinus pictus, Pseudocentrotus depressus, Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, and Tripneustes gratilla.

	Table I. Proposed Roots	s for <i>C. reinhardtii</i> Dynein Genes
Gene family root	Root derivation	Characteristics of protein family
DHC	Dynein Heavy Chain	ATPases/motors
DIC	Dynein Intermediate Chain	WD-repeat proteins
DLI	Dynein Light Intermediate chain	Originally named based on migration between ICs and LCs. Class found only in "cytoplasmic" dyneins, including IFT dynein
DLU	Dynein components with LeU cine-rich repeats	Contain $\beta\beta\alpha$ barrels derived from leucine-rich repeats
DLX	Dynein Light chain thioredoXin	Redox-sensitive thioredoxins with vicinal dithiols
DLT	Dynein Light chain Tctex1-like	Tctex1/Tctex2 family proteins; some are also found in conventional cytoplasmic dynein
DLR	Dynein Light chain Roadblock-like	Related to the roadblock light chains found in conventional cytoplasmic dynein
DLL	Dynein Light chain in LC8 family	Very highly conserved family of dimeric light chains found in many enzyme systems
DLE	Dynein Light chain in EF-hand family	Ca ²⁺ -binding components containing EF-hand motif(s)
DCC	Dynein Coiled Coil	Contain extensive regions of coiled-coil structure
DOI	Dynein Outer arm-Interacting	Associate with outer arm dynein but do not fall into other categories
DII	Dynein Inner arm-Interacting	Associate with inner arm dyneins but do not fall into other categories
DAP	Dynein Assembly PIH domain	Required for dynein assembly and contain PIH domains
DAW	Dynein Assembly WD repeat	Required for dynein assembly and contain WD-repeat motifs
DAU	Dynein Assembly leUcine-rich repeat	Required for dynein assembly and contain leucine-rich repeat motifs
DAB	Dynein Assembly Blocked	Required for dynein assembly but do not fall into other categories

naming of new genes encoding dynein subunits as these are identified; we propose these be numbered sequentially.

It is important to note that although we propose altering the gene names to yield an internally consistent scheme, we suggest that current mutant and protein names be retained so as to maintain continuity in the literature. Thus, we recommend that when describing a gene product in a publication, the corresponding gene name be used at first mention so that the gene product is unambiguously identified, and that the common protein and/or mutant names be employed thereafter. This could be readily achieved by inclusion of a brief statement such as "DHC1b (encoded at *DHC16*) is the dynein motor subunit responsible for retrograde IFT."

Mutants, Protein Aliases, and Orthologs

Mutants defective in dynein genes have been identified through a variety of genetic screens following UV or insertional mutagenesis. These strains exhibit a range of phenotypes including various degrees of flagellar dysfunction, slow swimming, and impaired flagellar assembly depending on the mutant allele and the particular component that is altered. For example, strains unable to assemble outer dynein arms exhibit a characteristic slow, jerky swimming phenotype [Kamiya and Okamoto, 1985; Mitchell and

Rosenbaum, 1985], whereas those with defective inner arms have defects in forming bends of appropriate amplitude [Kamiya et al., 1991]. The mutant alleles that have been isolated for each component and the various aliases used for the encoded proteins are listed in Table III.

As detailed above, much confusion has built up in the literature about which dynein components are orthologous due to the long history of dynein research and the multiple naming schemes used in various organisms. Consequently, Table IV provides a listing of the current *C. reinhardtii* gene and protein names along with their orthologs (where those can be unambiguously determined) in the ciliate *T. thermophila*, the sea urchins *Anthocidaris crassispina* and *Strongylocentrotus purpuratus*, the primitive chordate *Ciona intestinalis*, the fish *Danio rerio*, and the mammal *Homo sapiens*. A more comprehensive tabulation is provided in the supplemental table available online.

In conclusion, we describe here a new consensus nomenclature for the flagellar dynein genes of *C. reinhardtii* and provide a comprehensive tabulation of the gene products and various aliases, the mutant alleles isolated for each gene, and the designations of orthologous components in other model organisms. Axonemal dyneins provide the basis for ciliary motion in all organisms with motile cilia, and IFT dynein is necessary for the assembly and maintenance of cilia in most ciliated organisms. Because of its utility for biochemical and genetic analyses, *C. reinhardtii* has been a favorite model for understanding

New gene name	Original gene name	Accession number	Description of encoded protein
Heavy chains			
DHC1	DHC1 (IDA1, PF9)	Q9SMH3	1α heavy chain of inner arm I1/f
DHC2	DHC2	XP_001694660	Inner arm dynein species d heavy chain
DHC3	DHC3	XP_001696272	Inner arm dynein heavy chain (minor species) ^b
DHC4	DHC4	EDP07657	Inner arm dynein heavy chain (minor species) ^b
DHC5	DHC5	XP_001699742	Inner arm dynein species b heavy chain
DHC6	DHC6	XP_001700741	Inner arm dynein species a heavy chain
DHC7	DHC7	XP_001692695	Inner arm dynein species g heavy chain
DHC8	DHC8	XP_001692092	Inner arm dynein species e heavy chain
DHC9	DHC9 (IDA9)	BAE19786	Inner arm dynein species c heavy chain
DHC10	DHC10 (IDA2)	Q9MBF8	1β heavy chain of inner arm I1/f
DHC11	DHC11	XP_001694047	Inner arm dynein heavy chain (minor species) ^b
DHC12	DHC1a (PCR4)	EDP05194	Inner arm dynein heavy chain ^c
DHC13	ODA11	Q39610	α outer arm heavy chain
DHC14	ODA4	Q39565	β outer arm heavy chain
DHC15	ODA2	Q39575	γ outer arm heavy chain
DHC16	DHC1b	Q9SMH5	Dynein heavy chain that mediates retrograde IFT
WD-repeat interm	ediate chains		, ,
DIC1	ODA9	Q39578	IC1 from outer arm dynein
DIC2	ODA6	P27766	IC2 from outer arm dynein
DIC3	IDA7	AAD45352	IC140 from inner arm I1/f dynein
DIC4	BOP5	AAU93505	IC138 from inner arm I1/f dynein
DIC5	FAP133	XM_001699649	IFT dynein intermediate chain
Light intermediate	e chains		·
DLI1	D1bLIC	AAT37069	Light intermediate chain of IFT dynein
Leucine-rich repea	t proteins		
DLU1	LC1 (DLC1)	AAD41040	Outer arm dynein γ heavy chain-associated
DLU2	ODA8 (MOT37)	EPD09919	ODA8 protein required for outer arm assembly
Thioredoxin-like l	ight chains		
DLX1	LC3 (DLC3)	Q39592	LC3 thioredoxin associated with outer arm β heavy chain
DLX2	LC5 (DLC5)	Q39591	LC5 thioredoxin associated with outer arm α heavy chain
Tctex1-like light o	hains		
DLT1	LC9 ^d	AAZ95589	LC9 present in outer arm dynein
DLT2	ODA12	AAB58383	LC2 present in outer arm dynein
DLT3	TCTEX1	AAC18035	Tctex1 present in inner arm I1/f
DLT4	TCTEX2b	DAA05278	Tctex2b present in inner arm I1/f
Roadblock-like lig	tht chains		·
DLR1	ODA15 (DLC7a)	AAD45881	LC7a present in outer arm and inner arm I1/f dyneins
DLR2	LC7b (DLC7b)	EDP03034	LC7b present in outer arm and inner arm I1/f dyneins
DYNLL/LC8 fami			-
DLL1	FLA14	Q39580	LC8 present in outer arm, inner arm I1/f and IFT dyneins Also a component of the radial spokes
DLL2	ODA13	Q39579	Outer arm dynein LC6
DLL3	LC10 (MOT24)	EDP00562	Outer arm dynein LC10

■ 558 Hom et al.

		Table II. (Cor	ntinued)
New gene name	Original gene name	Accession number	Description of encoded protein
Calmodulin (EF-h	and) homologs		
DLE1	LC4 (DLC4)	Q39584	LC4 present in outer arm dynein. Binds Ca ²⁺
DLE2	VFL2	P05434	Centrin present in monomeric inner arm dyneins b, e, and g. This gene is also termed CNT1 (named for CeNTrin). Binds Ca ²⁺
DLE3	ODA14	AAP49435	DC3 component of outer arm docking complex. Binds Ca ²⁺
Coiled-coil protein	ns		
DCC1	ODA3	AAC49732	DC1 of the outer arm docking complex
DCC2	ODA1	AAK72125	DC2 of the outer arm docking complex
DCC3	ODA5 ^d	AAS10183	ODA5 protein that associates with an adenylate kinase
Outer arm dynein	interacting proteins		,
DOI1	LIS1 ^{d,e}	ABG33844	LIS1 protein associates with α heavy chain of outer arm
Inner arm dynein	interacting proteins		
DII1	IDA4	Q39604	p28 light chain present in inner arm species a, c, and d
DII2	FAP146	BAG07147	p38 associates with inner arm species d
DII3	d	BAF98914	p44 associates with inner arm species d
DII4	IDA5	P53498	Actin, present in inner arm dynein species a, b, c, d, e, g, and some minor species. This gene is also known as ACT1 (named for ACTin)
DII5	NAP1	AAC49834	NAP, novel actin-related protein that can substitute for actin in inner arm dyneins b and g. This gene is also known as ARP12 (named for Actin Related Protein).
DII6	FAP94	EDP03678	IC97 present in inner arm I1/f dynein
DII7	FAP120	EDP07339	Ankyrin-repeat protein that interacts with IC138(DIC4) from inner arm I1/f
Dynein assembly	proteins containing a PI	H domain	
DAP1	PF13 (MOT45)	BAG69288	PF13 protein required for inner/outer arm assembly in cytoplasm
DAP2	IDA10 (MOT48)	BAI83444	MOT48 protein required for inner arm assembly in cytoplasm ^f
Dynein assembly	proteins containing WD	repeats	
DAW1	ODA16	AAZ77789	ODA16 protein acts as an IFT adaptor for outer arm dynein
Dynein assembly	proteins containing leuci	ine-rich repeats	
DAU1	ODA7	Q09JZ4	ODA7 is a LRR protein required for outer arm assembly in cytoplasm
Dynein assembly	blocked		
DAB1	PF22 ^g	AEC04845	PF22 is required for assembly of outer arms

^aAlternative gene names are indicated in parentheses in the second column.

the composition and function of these flagellar dyneins. As research on dynein advances in *C. reinhardtii* and other model organisms with their own advantages, the nomenclature proposed here will provide a logical basis for the

naming of newly identified dynein genes and mutant alleles and facilitate comparisons between *C. reinhardtii* and the other organisms. Finally, defects in subunits of both IFT dynein and axonemal dyneins are known to result in

Chlamydomonas Dynein Gene Nomenclature 55

^bYagi et al. [2009].

^cYagi (unpublished results).

^dThese genes were missing and/or not named in the *C. reinhardtii* version 3 genome catalog.

^eNot to be confused with the LIS1 (light-influenced suppressor) locus of Dutcher et al. [1988].

^fYamamoto et al. [2010].

^gThis gene is missing from the *C. reinhardtii* version 4 genome assembly.

Table III. Nomenclature of *C. reinhardtii*Dynein Proteins and Representative Mutant

Alleles

Gene name	Mutant alleles	Protein aliases ^a
DHC1	$ida1-1 \rightarrow ida1-6,$ $pf9-1 \rightarrow pf9-4, pf30$	1α ΗC
DHC2	_	DHC2
DHC3	_	DHC3
DHC4	_	DHC4
DHC5	_	DHC5
DHC6	_	DHC6
DHC7	_	DHC7
DHC8	_	DHC8
DHC9	ida9	DHC9
DHC10	$ida2$ -1 \rightarrow $ida2$ -6	1β НС
DHC11	_	DHC11
DHC12	_	DHC12
DHC13	oda11	α ΗC
DHC14	$oda4-1 \rightarrow oda4-4, \ oda4-s7, sup_{pf}1-1, \ sup_{pf}1-2$	βНС
DHC15	oda2, oda2-t, pf28, sup _{pf} 2	ү НС
DHC16	dhc1b-1, stf1-1, stf1-2, dhc1b-2(dhc1b ^{ts})	DHC1b
DIC1	oda9-1, oda9-2(V5), oda9-3(V8), oda9-4(V24), oda9-5(V27)	IC1, IC78, IC80, M _r 78,000
DIC2	oda6-1, oda6-2, oda6-r75, oda6-r88	IC2 , IC69, IC70, <i>M</i> _r 69,000
DIC3	ida7	IC140, $M_{\rm r}$ 140,000
DIC4	bop5-1, bop5-2	IC138, M _r 138,000
DIC5	_	D1bIC, FAP133
DLI1	d1blic, d1blic::D1bLIC(K53S), d1blic::D1bLIC(K53I, S54A)	D1bLIC, LIC
DLU1	-	LC1, M _r 22,000
DLU2	oda8-1 → oda8-3	ODA8
DLX1	-	LC3 , M _r 16,000
DLX2	_	LC5 , M _r 14,000
DLT1	_	LC9
DLT2	oda12-1, ^b oda12-2	LC2 , M _r 19,000
DLT3	_	Tctex1
DLT4	pf16(D2) ^c	Tctex2b
DLR1	oda15	LC7a, LC7
DLR2	_	LC7b

(Continued)

	Table III. (Continue	ed)
Gene name	Mutant alleles	Protein aliases ^a
DLL1	fla14-1, fla14-2	LC8 , <i>M</i> _r 8,000, 8 kDa
DLL2	oda13	LC6 , M _r 11,000
DLL3	oda12-1 ^b	LC10, MOT24
DLE1	_	LC4 , M _r 18,000
DLE2 (CNT1)	vfl2-1, vfl2-R1, vfl2-R5, vfl2-R8, vfl2-R10, vfl2-R11, vfl2-R13	Centrin
DLE3	oda14-1(V06), oda14-2(V16), oda14-3(F28), ^d oda14-1::ODA14 (E74Q, E152Q)	DC3
DCC1	oda3-1, oda3-2, oda3-4, oda3-5	DC1
DCC2	oda1-1 → oda1-3	DC2
DCC3	oda5-1, oda5-2	ODA5
DOI1	_	LIS1
DII1	<i>ida4-1</i> → <i>ida4-3</i>	p28
DII2	_	p38
DII3	_	p44
DII4 (ACT1)	ida5	Actin
DII5 (ARP12)	-	NAP
DII6	-	IC97, IC110
DII7	-	FAP120
DAP1	pf13-1, pf13-2(pf13A), pf13-3	PF13
DAP2	ida10, mot48	MOT48
DAW1	oda16	ODA16
DAU1	oda7	ODA7
DAB1 ^e	pf22-1, pf22-2(pf22A)	PF22

^aThe current preferred protein name is indicated first in bold type. ^bThe *DLT2* and *DLL3* genes are adjacent; both are completely deleted in *oda12-1*.

human disease [Dagoneau et al., 2009; Escudier et al., 2009; Leigh et al., 2009; Merrill et al., 2009], and the homologous relationships between *C. reinhardtii* and *H. sapiens* genes clarified here should expedite identification and analysis of candidate disease genes in human patients.

Methods

The *Chlamydomonas* dynein genes identified here are the result of a *C. reinhardtii* genome reannotation initiative

■ 560 Hom et al.

 $^{^{}c}pf16(D2)$ lacks both the DLT4 and PF16 genes; the latter encodes a component of the central pair microtubule complex.

^dThe *oda14-3(F28)* allele also lacks the *RSP14* gene which encodes a component of the radial spokes.

 $^{^{\}mathrm{e}}\mathrm{The}\ DAB1$ gene is currently missing from the version 4 genome assembly.

	C. reinhardtii	ardtii	T. thermophila	A. crassispina and S. purpuratus ^c	Ci. intestinalis	D. rerio	H. sapiens
	Gene	Protein	Gene (Protein)	Protein	Protein	Gene	Gene
Heavy chains							
Inner arm I1/f	DHCI	1α HC	DYH6	DNAH10			DNAH10
	DHCI0	1β HC	DYH7	DNAH2			DNAH2
Outer arm	DHC13	αНС	DYH5 (γ HC)	I	I		ı
	DHC14	βНС	$DYH4$ (β HC)	β HC (Sp-DNAH9)	αНС		DNAH9
							DNAH11 DNAH17
	DHC15	у НС	$DYH3$ (α HC)	α HC (Sp-DNAH5, Sp-DNAH8, Sp-DNAH15)	в нс		DNAH5 DNAH8
IFT dynein ^d	DHC16	DHC1b	DYH2	Sp-DYNC2H1		Dync2hI	DYNC2H1
Inner arm group 3	DHC4	DHC4	$\{DYH8\}$	{DNAH3		{DNAH7	{DNAH3
	DHC5	DHC5	DYH10	DNAH4		DNAH12}	DNAH7
	9DHC	DHC6	DYH12	DNAH7			DNAH12
	DHC8	DHC8	DYH13	DNAH12}			DNAH14
	DHC9	DHC9	DYH14				
	DHC11	DHC11	DYH17				
			DYH18				
			DYH25}				
Inner arm group 4	DHC2	DHC2	6HXQ	DNAH1			$\{DNAHI\}$
			DYHII				DNAH6
			DXH16				
			DYH19				
			DYH20				
Inner arm group 5	DHC3	DHC3	$\{DYH15\}$	I			
	DHC7	DHC7	DYH22	DNAH6			
			DYH23				
			DYH24				
Unassigned	DHC12	DHC12					

A. crassispina and S. purpuratus ^c Ci intestinalis D. rerio Protein Protein Gene IC1 (Sp-DNAII) IC3 (Sp-DNAII) IC1 (Sp-B666 IC3 (Sp-DNAII) IC1 (Sp-B7866 IC3 (Sp-DNAII) IC1 (Sp-B786 D2LIC (Sp-DNAII) LC1 (Sp-B786 A) LC2 (Sp-DNAII) LC1 (Sp-B766 B) LC3 (Sp-DYNLT1) LC3 C1 (Sp-DYNLT2) LC3 Trackold1 RBPH (Sp-DYNLRB1) LC5 Dynlfb1 LC7L1 (Sp-DYNLRB2) LC6 (Sp-DYNLL1) LC6 LC4 (Sp-DNAL4) LC4 zgc:100999 LC4 (Sp-DNAL4) LC4 zgc:100999				Tak	Table IV. (Continued)			
Gene Protein Gene (Protein) Protein Protein Gene DiC2 1C1 IC2 1C2 (Sp-DNAI1) 1C3 2gg-138666 DIC2 1C2 1C3 1C3 (Sp-DNAI2) 1C1 DGC00004620 DIC3 1C140 1C3 1C3 (Sp-DNAI2) 1C1 DGC00004620 DIC3 1C140 1C3 1C3 (Sp-DNAI2) 1C1 DGC00004620 DIC4 1C138 1C6 D2LC (Sp-DNAI2) 1C1 DGC00004620 DL11 D1b1C D2LC (Sp-DNAI2) 1C1 DGC00004620 DGC00004620 DL11 D1b1C D2LC (Sp-DNAI2) 1C1 DGC00004620 DGC00004620 DL11 LC3 1C3 LC1 LC1 DGC00004620 DGC00004620 DL12 LC3 1C2 LC3 LC3 LC3 DGC00004620 DL13 LC3 1C2 LC3 LC3 DGC00004620 DGC00004620 DL13 LC3 LC3 LC3 LC3 LC3 LC		C. reinhar	rdtii	T. thermophila	A. crassispina and S. purpuratus ^c	Ci. intestinalis	D. rerio	H. sapiens
□ ICI* ICI* ICI* ICI* ICI* ICI* ICI ICI ICI ICI ICI<		Gene	Protein	Gene (Protein)	Protein	Protein	Gene	Gene
□ ICIT	Intermediate chains							
DICI ICI IC2 IC2 (\$p\$-DNAII) IC2 IC2 (\$p\$-DNAII) IC2 Sg-158666 DIC3 IC140 IC3 IC3 (\$p\$-DNAIZ) ICI ICI (140) IC3 IC3 ICI (150) ICI (150)	Outer arm	I	ı	I	$IC1^e$	IC3°		$TXNDC3^{e}$ $(Sptrx2)$
DICZ ICZ ICZ ICZ (Sp-DNALZ) ICJ (DCD00004620 DICZ ICL40 ICS ICG (Sp-DNALZI) ICT (Sp-DNALZI) DICZ DIBLIC DZLIC (Sp-DNALZI) ICT (Sp-DNALZI) DymcZiI (DymcZiI) DLUZ ODA8 ICRA (IC3-like A) (LC3 (Sp-DNALTI) ICT (Sp-DNALTI) ICT (Sp-DNALTI) ICT (Sp-DNALTI) DLXZ LC3 ICA3 (IC3-like B) (LC3 (Sp-DNALTI) ICT (Sp-DNALTI) ICC (Sp-DNALTI) ICC (Sp-DNALTI) DLXZ LC3 ICCAA ICT (Sp-DNALTI) ICC (Sp-DNALTI) ICC (Sp-DNALTI) DLXZ LC2B ICCAA ICT (Sp-DNALTI) ICC (Sp-DNALTI) ICC (Sp-DNALTI) DLXZ LC7B ICCAA ICC (Sp-DNALTI) ICC (Sp-DNALTI) ICC (Sp-DMALTI) DLXZ LC7B ICCAB ICC (Sp-DNALLI) ICC (Sp-DMALTI) ICC (Sp-DMALTI) DLXZ LC7B ICCAB ICC (Sp-DNALLI) ICC (Sp-DMALTI) ICC (Sp-DMALTI) DLXZ LC7B ICCAB ICCAB (Sp-DNALTI) ICC (Sp-DMALTI) ICC (Sp-DMALTI) DLXZ		DICI	IC1	ICZ	IC2 (Sp-DNAI1)	IC2	zgc:158666	DNAII
DICA IC140 ICS DICA IC138 IC6 DICA IC138 IC6 DICA DIBIC D2IC DLI D2IC D2IC DLI LC1 LC1 DLU2 DDA8 LC3 (LC3-like A) DLU2 LC3 (LC3-like B) - DLV1 LC3 ICAI (LC3-like B) DLV2 LC3 ICAI (LC3-like B) DLV3 LC3 ICAI (LC3-like B) DLV3 LC3 ICAI (Gs-DYNLT1) LC3 DLV3 LC3 ICAI (Gs-DYNLT1) LC3 DLV3 LC3 ICAI (Gs-DYNLT1) LC3 DLV3 LC2A LC3 (Sp-DYNLT8) LC3 DLV4 LC7B LC7L1 (Sp-DYNLRB1) LC3 DLV4 LC7B LC7L1 (Sp-DYNLRB2) Dymital DLL1 LC3 LC6 (Sp-DYNLLB2) LC6 DLL1 LC3 LC7L1 (Sp-DYNLRB2) LC6 DLL2 LC3 LC4 (Sp-DYNLLB2) LC4		DIC2	IC2	IC3	IC3 (Sp-DNAI2)	IC1	LOC100004620	DNAI2
DIC4 IC138 IC6 DIC5 D1bIC D2IC PM-271 Dync211 DLI D2IC D2LIC (\$p-DYNC2LII) Fg:92542 DLU1 LC1 LC2 (\$p-DNALI) LC1 Egg:92542 DLU2 ODA8 LC34 (LC3-like B) - - - DLV1 LC3 LC38 (LC3-like B) - - - - DLV2 LC3 TCTALA (Tctex1B) LC3 (\$p-DYNLT1) LC3 - - - DLV2 LC3 LC3B (LC3-like B) LC3 (\$p-DYNLT2) LC3 Tctex1d -	Inner arm	DIC3	IC140	ICS				WDR63
DLIS D2LC D2LIC (Sp-DYNC2LII) LCI D2LIC (Sp-DYNC2LII) D2LIC (Sp-DYNC2LII) D3mc2ii DLU1 LC1 LC3 LC3 (Sp-DNALI) LC1 zgc:92542 DLV1 LC3 LC3A (LC3-like A) — — — DLX1 LC3 LC3B (LC3-like B) — — — DLX1 LC9 TCT1A (Tctex1B) LC3 (Sp-DYNLT1) LC3 Tctex1d1 DLX3 Tctex1 TCT2B (Tctex1B) LC1 (Sp-DYNLT2) LC3 Tctex1d2 DLX3 LC2 LC2B RBPH (Sp-DYNLT2) LC3 Tctex1d2 DLX4 Tctex2B LC7A RBPH (Sp-DYNLTB1) LC3 Tctex1d2 DLX9 LC7A LC7B LC7A RBPH (Sp-DYNLTB2) LC3 Tctex1d2 DLX1 LC7A LC7B LC7LI (Sp-DYNLTB2) LC4 Spnilb1 DLL1 LC8 LC6 (Sp-DYNLTB1) LC4 Spnilb2 DLL2 LC6 LC6 (Sp-DYNLTB2) LC4 Spnilb2 DLL2		DIC4	IC138	9DI			Wdr/8	WDR78
DLUI LCI LCZ (Sp-DYNCZLII) LCI Agg:92542 DLUI LCI LCZ (Sp-DNALI) LCI zgc:92542 DLUI LC3 LC3A (LC3-like A) — — DLXI LC3 LC3B (LC3-like B) — — DLXI LC3 TCTLA (Tctex1B) LC3 (Sp-DYNLT1) LC3 DLXI LC9 TCTLA (Tctex1B) LC1 (Sp-DYNLT2) LC3 DLXI LC2 TCTLA (Tctex1B) LC1 (Sp-DYNLT2) LC3 DLXI LC2 TCTLA (Tctex1B) LC1 (Sp-DYNLTB2) LC3 DLXI LC7A RBPH (Sp-DYNLTB2) LC3 Tctex1d2 DLXI LC7A RBPH (Sp-DYNLRB2) LC3 Dynlibit DLLI LC7A RBPH (Sp-DYNLRB2) LC4 Spnilbit DLLI LC3 LC4 (Sp-DYNLRB2) LC4 Spnilbit DLLI LC3 LC4 (Sp-DNAL4) LC4 Spnilbit DLLI LC4 LC4 (Sp-DNAL4) LC4 Spnilbit DLE3	IFT dynein	DIC5	D1bIC	D2IC			Dync2iI	WDR34
h repeats DLUI LCI LCI (Sp-DNALII) LCI agg:92542 ne-like DLU2 ODA8 LC3 (LC3-like A) — — DLU2 ODA8 LC3A (LC3-like A) — — — DLV2 LC3 LC3A (LC3-like B) — — — DLV2 LC3 [CC3A (LC3-like B)] — — — DLV3 LC3 [CC3A (LC3-like B)] — — — DLV3 LC4 [CC3A (LC3-like B)] — — — DLV3 Tctexl [CC7B (TCTB (Tctexl B)] LC1 (Sp-DYNLT1) LC3 [Case (According)] DLV3 Tctexl LC2B LC7B RBPH (Sp-DYNLRB1) LC3 [Case (According)] Ilike DLR LC7A RC7B LC7B LC7B LC7B LC7B LC7B CC7B LC7B	Light intermediate chain ^d							
h repeats DLUI LC1 LC2 (Sp-DNALI) LC1 zgc:92542 ne-like DLUZ LC3 (LC3-like B) — — — DLX2 LC3 (LC3-like B) — — — DLX2 LC3 (TCTIA (Tcex1B)) LC3 (Sp-DYNLT1) LC3 — DLT7 LC9 {TCTIA (Tcex1B)} LC1 (Sp-DYNLT1) LC3 [Tcex1d] DLT3 Tcex2b LC2A LC1 (Sp-DYNLT2) LC3 [Tcex1d] DLT3 Tcex2b LC2B RBPH (Sp-DYNLRB1) LC3 [Tcex1d] DLT4 Tcex2b LC7B RBPH (Sp-DYNLRB2) LC3 [Tcex1d] DLR9 LC7a LC7B RBPH (Sp-DYNLRB2) LC3 [Dynlh] DLL1 LC7a LC7B LC7B LC7B LC7B LC7B LC7B LC7B LC7B LC7B Dynlh91 DLL1 LC3 LC6 (Sp-DYNLL1) LC4 Sprill2 Dynlh91 Dynlh91 DLE1 LC4 LC4 (Sp-DNAL		DLII	D1bLIC	D2LIC	D2LIC (Sp-DYNC2LII)		Dync2li1	DYNC2LII
DLU1 LC1 LC2 (Sp-DNALI) LC1 zgc-92542 DLU2 ODA8 LC34 (LC3-like A) — — DLX1 LC3 LC34 (LC3-like B) — — DLX2 LC5 — — — DLT1 LC9 {TCT14 (Tctex1B)} LC3 (Sp-DYNLT1) LC3 DLT2 LC2 LC2B LC1 (Sp-DYNLT3) LC3 Tctex1dt DLT4 Tctex1 TCT2B (Tctex1B) LC1 (Sp-DYNLTB) LC3 Tctex1dt DLR1 LC7 LC2B LC7L1 (Sp-DYNLRB2) LC3 Tctex1dt DLR2 LC7B LC7B (Sp-DYNLRB2) LC3 Dymlb1 DLL1 LC8 LC8* (LC8-like)* LC6 (Sp-DYNLL1) LC3 Dymlb1 DLL2 LC6 LC6 LC7L1 (Sp-DYNLLB2) LC4 Dymlb1 DLL2 LC6 LC6 LC6 Dymlb1 DLL2 LC6 LC6 Dymlb1 DLL2 LC6 LC6 Dymlb1 DLL2 <td>Light chains</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Light chains							
DLUZ ODA8 LRRC56 DLXI LC3B (LC3-like A) — — DLXZ LC3B (LC3-like B) — — — DLXZ LC3 {TCTLIA (TCtex1B)} LC3 (\$p\$-DYNLT1) LC3 DLXZ TCTCA LC1 (\$p\$-DYNLT2) LC3 {Tctex1d2} DLXZ LC2 {LC2A LC1 (\$p\$-DYNLT2) LC3 {Tctex1d2} DLXZ LC7A RBPH (\$p\$-DYNLRB1) LC3 Dynlrb1 DLRZ LC7B LC7L1 (\$p\$-DYNLRB2) LC5 Dynlrb1 DLLI LC8 LC6 (\$p\$-DYNLRB2) LC5 {Dynlrb1 DLLI LC8 LC6 (\$p\$-DYNLRB2) LC5 {Dynlrb1 DLLI LC8 LC6 (\$p\$-DYNLL1) LC6 {Dynlrb1 DLLI LC9 LC4 - - - DLLI LC6 (\$p\$-DYNLL1) LC4 Sgc:100999 - DLEI LC4A - - - - DLES CNTI CENTI CENTI	Leucine-rich repeats	DLUI	LC1	TCI	LC2 (Sp-DNAL1)	LC1	zgc:92542	DNAL1
DLXI LC3 LC3A (LC3-like B) - - - DLXZ LC3 (LC3-like B) - - - - DLT1 LC9 {TCT1A (Tcex1B)} LC3 (Sp-DYNLT1) LC3 - - DLT2 LC2 {LC2A LC1 (Sp-DYNLT2) LC3 {Tcex1d2} DLT4 Tcex2b LC2B LC1 (Sp-DYNLT3) LC3 {Tcex1d2} DLR1 LC7a LC7B RBPH (Sp-DYNLRB1) LC3 Tcex1d2} DLR2 LC7b LC7B LC7B LC7L1 (Sp-DYNLRB1) LC3 {Dynlrb1} DLL2 LC7b LC7B LC8* LC6 (Sp-DYNLL1) LC3 {Dynlrb1} DLL2 LC7b LC8* LC6 (Sp-DYNLL1) LC6 {Dynlrb1} DLL2 LC7b LC8* LC6 (Sp-DYNLL1) LC4 LC44 DLE1 LC4 LC44 - - - - DLE2 CONTIN CENT (Centrin) - - - -		DLU2	ODA8		LRRC56			LRRC56
DLX2 LC3B (LC3-like B) —	Thioredoxine-like	DLXI	LC3	LC3A (LC3-like A)	I		I	I
DLX2 LC5 — <td></td> <td></td> <td></td> <td>LC3B (LC3-like B)</td> <td></td> <td></td> <td></td> <td></td>				LC3B (LC3-like B)				
DLT1 LC9 {TCT1A (Terex1A) LC3 (Sp-DYNLT1) LC3 DLT3 Tctex1 TCT1B (Tctex1B) LC1 (Sp-DYNLT2) LC2 {Tctex1Al1 DLT2 LC2A LC1 (Sp-DYNLT2) LC2 {Tctex1Al1 DLT4 Tctex2b LC2B RBPH (Sp-DYNLRB1) LC2 {Tctex1Al2} DLR2 LC7b LC7A RBPH (Sp-DYNLRB2) LC5 Dymlrb1 DLL1 LC8 LC7B LC7L1 (Sp-DYNLRB2) LC6 {Dymlrb1 DLL1 LC8 LC8* LC6 (Sp-DYNLL1) LC6 {Dymll1 DLL2 LC8 LC8* (LC8-like)* - Dymll2 DLL3 LC1 LC4 LC4 (Sp-DNAL4) LC4 Sgc:100999 DLE1 LC4 LC4B - LC4B LC4B LC4B LC4B DLE2 CNTI CENTIC CENTI		DLX2	LC5		I	I	I	I
DLT3 Tctex1 $TCTIB$ (Tctex1B)} LC1 (Sp-DYNLT2) LC2 $\{Tctex1dI$ DLT2 LC2 $\{LC2A\}$ LC1 (Sp-DYNLTB1) LC2 $\{Tctex1dI\}$ DLT4 Tctex2b $LC7B$ RBPH (Sp-DYNLRB1) LC3 $Dynlb1$ DLR2 LC7b $LC7B$ LC7L1 (Sp-DYNLRB2) LC5 $Dynlb1$ DLL1 LC8 $LC8$ LC6 (Sp-DYNLL1) LC6 $\{Dynll1\}$ DLL2 LC6 $LC8$ $LC6$ (Sp-DNAL4) $LC6$ $\{Dynll2\}$ DLL3 LC10 $LC10$ $LC4$ (Sp-DNAL4) $LC4$ $LC4$ DLL3 LC4 $LC4$ $LC4$ $LC4$ $LC4$ DLE3 LC7 $LC4$ $LC4$ $LC4$ $LC4$ DLE3 DC3 $LC4$ $LC4$ $LC4$ $LC4$	Tctex1-like	DLTI	CO ICO	{TCTIA (Tctex1A)	LC3 (Sp-DYNLT1)	LC3		$\{DYNLTI^{\mathrm{f}}\ (TctexI)$
DLT2 LC2 {LC2A LC1 (Sp-DYNLT2) LC2 {Tctex1d2} DLT4 Tctex2b LC2B RBPH (Sp-DYNLRB1) LC5 Tctex1d2} DLR1 LC7b LC7B} LC7L1 (Sp-DYNLRB2) LC5 Dynlrb1 DLL2 LC7b LC7B LC7B LC6 (Sp-DYNLL1) LC6 {Dynll1} DLL2 LC6 LC8x (LC8-like) ⁸ - Dynll2 DLL3 LC10 LC10 LC4 (Sp-DNAL4) LC4 Dynll2 DLE1 LC4 LC4A - LC4B LC4B LC4B DLE2 (CNT7) Centrin CENI (Centrin) CENI (Centrin) CENI (Centrin) CENI (Centrin) CENI (Centrin)		DLT3	Tctex1	TCT1B (Tctex1B)}				DYNLT3 (rp3)
DLR4 Tctex2b LCZA RBPH (Sp-DYNLRB1) LC7L1 (Sp-DYNLRB2) LC5 Tctex1d2} DLR2 LC7b LC7L1 (Sp-DYNLRB2) LC5 Dynlrb1 DLL2 LC7b LC7c LC6 (Sp-DYNLL1) LC6 LC6 DLL2 LC6 LC8x (LC8-like) ⁸ - Dynll2 DLL3 LC10 LC10 LC4 (Sp-DNAL4) LC4 Zgc:100999 DLE1 LC4 LC4A - LC4B LC4B LC4B DLE2 (CNT1) Centrin CENI (Centrin) CENI (Centrin) CENI (Centrin) CENI (Centrin)		DLT2	LC2	$\{LC2A$	LC1 (Sp-DYNLT2)	LC2	$\{TctexIdI$	{TCTE3
DLR2 LC7b LC7L1 (Sp-DYNLRB1) LC5 Dynlrb1 DLR2 LC7b LC7B LC7L1 (Sp-DYNLRB2) LC6 (Sp-DYNLRB2) DLL1 LC8 LC6b LC6 (Sp-DYNLL1) LC6 LC6 (Sp-DYNLL1) DLL2 LC6 LC8x (LC8-like) ⁸ - Dynll2 DLL3 LC10 LC10 LC4 (Sp-DNAL4) LC4 zgc:100999 DLE1 LC4 LC4A - LC4B zgc:100999 DLE2 (CNT1) Centrin CENI (Centrin) CENI (Centrin) CENI (Centrin)		DLT4	Tctex2b	LC2B			TctexId2	$TCTEXID2 (Tctex2)$ }
DLR2LC7bLC7B}LC6 (Sp-DYNLL1)LC6 $\{Dynll1\}$ DLL1LC8LC8x (LC8-like)**- $Dynll2$ DLL2LC6LC8x (LC8-like)**-LC4 (Sp-DNAL4)LC4 $zge:100999$ DLE1LC4LC4ADLE2 (CN71)CentrinCENI (Centrin)DLE3DC3	Roadblock-like	DLRI	LC7a	LC7A	RBPH (Sp-DYNLRB1) LC7L1 (Sp-DYNLRB2)	LC5	DynlrbI	$\{DYNLRBI^{\mathrm{f}}$
$DLLI \qquad LC8 \qquad LC8^{\$} \qquad LC6 \; (Sp-DYNLL1) \qquad LC6 \qquad \{DynllI \}$ $DLL2 \qquad LC6 \qquad LC8x \; (LC8-like)^{\$} \qquad - \qquad \qquad - \qquad \qquad LC4 \qquad \qquad$		DLR2	LC7b	LC7B				DYNLRB2}
DLL2 LC6 LC8x (LC8-like) [§] - Dynll2} DLL3 LC10 LC10 LC4 (Sp-DNAL4) LC4 zgc:100999 DLE1 LC4 LC4A - LC4B LC4B DLE2 (CNTI) Centrin CENI (Centrin) Centrin DLE3	LC8 family	DTTI	LC8	$FC8^{\circ}$	LC6 (Sp-DYNLL1)	TC6	$\{DynllI\}$	DYNLLI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							Dynll2	DYNLL2
DLL3 LC10 LC10 LC4 (Sp-DNAL4) LC4 zgc:100999 DLE1 LC4 LC4A - LC4B LC4B - DLE2 (CNT1) Centrin CENI (Centrin) DLE3 DC3		DLL2	PC6	LC8x (LC8-like) [§]	I			I
DLE1 LC4 LC4A LC4B LC4B LC4B LC4B DLE2 (CNTI) Centrin CENI (Centrin) DLE3 DC3		DLL3	LC10	TCIO	LC4 (Sp-DNAL4)	LC4	zgc:100999	DNAL4
LC4B Centrin CENI (Centrin) DC3	EF-hand	DLEI	LC4	LC4A	I			I
Centrin CENI (Centrin) DC3				LC4B				
	T	OLE2 (CNT1)	Centrin	CENI (Centrin)				CETNI, CETN2, CETN3
		DLE3	DC3					

■ 562 Hom et al. CYTOSKELETON

Table IV. (Continued)

H. sapiens

D. rerio

Ci. intestinalis

A. crassispina and S. purpuratus^c

T. thermophila

C. reinhardtii

	Gene	Protein	Gene (Protein)	Protein	Protein	Gene	Gene
Other components							
Coiled-coil	DCCI	DC1			IC4		
	DCC2	DC2			IC5, Axp66.0		CCDC114
	DCC3	ODA5					CCDC63
Outer arm-interacting	DOII	LIS1				{Wdr5 Poc1b}	
Inner arm-interacting	DIII	p28	p28A	p33 (Sp-DNALI1)		Dnali1	DNALII
			p28B p28C				
	DII2	p38		ZMYND12			ZMYND12
	DII3	p44		TTC29			TTC28
	DII4 (ACTI)	Actin	ACTI (Actin)	Actin	Actin	Actin	Actin ^h
	DII5 (ARP1)	NAP					
	9IIQ	FAP94		CASC1			CASCI
	DII7	FAP120					
Assembly factors							
PIH domain	DAPI	PF13				Kintoun ⁱ	DNAAF2
	DAP2	MOT48		PIH1D1		Pib1d1	PIHIDI
WD repeats	DAWI	ODA16		WDR69		Wdr69	WDR69
Leucine-rich repeats	DAUI	ODA7		LRRC50		Lrrc50	DNAAFI (LRRC50)
Blocked assembly	DABI	PF22					

Initial biochemical identification of proteins comprising the axonemal dyneins of various model organisms was reported by multiple groups including: for C. reinhardtii, Pfister et al. [1982], Piperno and Luck [1979]; for the sea urchin Tripneustes gratilla, Bell et al. [1979]; for T. thermophila, Porter and Johnson [1983]; and for Ci. intestinalis, Hozumi et al. [2006].

This table illustrates the names of orthologous components where that can be unambiguously determined. In some cases, multiple proteins in one organism are more closely related to each other than they are to any proteins present in another organism, as indicated by brackets, {...} across row entries. Thus, for the monomeric inner arm HCs (and some other components), phylogenetic analysis does not provide for a clear correspondence at the level of individual proteins. However, subgroupings are more clear [see also Wickstead and Gull, 2007; Wilkes et al., 2008] and are indicated here, although it is important to note that some ambiguity still remains. There are at least two nomenclatures for sea urchin axonemal dynein components currently in use. One derives from the original protein biochemistry and early sequence analysis of outer arm dynein components performed by a number of laboratories most notably those of Ian Gibbons [e.g., Bell et al., 1979] and Kazuo Ogawa [e.g., Ogawa et al., 1996, and light chain sequences published only in the database]. More recent ⁴The IFT dynein subunits in the nematode Caenorhabditis elegans are known as CHE3 (heavy chain), XBX-1 (light intermediate chain), and XBX-2 (a Tctex1/Tctex2 family light chain). A dynein IC annotation of the S. purpuratus genome identified additional components of sea urchin dyneins and provided alternate names for some components based mainly on the scheme used in mammals [Morris et al., 2006]. involved in IFT has not yet been unambiguously identified in *Ca. elegans. Ca. elegans* lacks axonemal dyneins.

Mammals express two canonical Tctex1 proteins (DYNLT1 and DYNLT3) and two DYNLRB proteins. It remains uncertain which members of these groups are orthologous to the C. reinhardtii "These ICs are modular proteins consisting of an N-terminal thioredoxin domain followed by several catalytic nucleoside diphosphate kinase (NDK) modules. The N-terminal domain is closely related to C. reinhardtii LC3 (DLX1) and LC5 (DLX2). However, subunits of the C. reinhardtii outer arm do not contain the NDK modules.

thereinhardtii LC6 (DLL2), although our analysis suggest this assignment is ambiguous with respect to other LC8-like sequences, notably LC8C (ABF38953). Furthermore, none of these T. thermophila ²The analysis of Wilkes et al. [2007] recognized LC8 and five LC8-like sequences (ABF38951—ABF38955) in *T. thermophila*; LC8D (LC8-likeD) (ABF38954) appeared most closely related to *C.* flagellar dynein components. Thus, both members of each group are listed.

LC8-like sequences contain the loop region insert that characterizes C. reinhardtii LC6. The most recent T. thermophila genome release includes only canonical LC8 and LC8E (LC8-likeE) genes. As amino acid differences occur throughout the LC8-likeA to LC8-likeE sequences, these sequences are unlikely to be generated by alternative splicing. It is possible that the current genome assembly has For organisms which express multiple actin isoforms, it has not yet been determined which isoform(s) are present in cilia/flagella. erroneously combined these genes into a common locus/scaffold.

#The kintoun (Ktu) mutant was originally identified in medaka [Oryzias latipes; Omran et al., 2008].

[Hom et al., in preparation], based on models generated using the gene-calling program AUGUSTUS [Stanke et al., 2008]. Proteome datasets (sources given in Supplementary Information, Table SI) for T. thermophila C3, Trypanosoma brucei TREU 927, S. purpuratus (sea urchin), Ci. intestinalis (sea squirt), Drosophila melanogaster (fruit fly), D. rerio (zebra fish), and H. sapiens (human) were pairwise aligned to the set of C. reinhardtii dyneins by context-specific BLAST [Biegert and Soeding, 2009]. Hits with bit scores within 2% of the best hit were collected and orthologs were assigned by manual inspection, mindful of the analyses by Wickstead and Gull [2007] and Wilkes et al. [2008]. Hits to multiple C. reinhardtii dynein genes were treated conservatively: when one-to-one ortholog associations were uncertain, homologous proteins were grouped into subclasses.

Acknowledgment

Our laboratories are supported by National Institutes of Health grants GM032843 (to S.K.D.), GM044228 (to D.R.M.), GM060992 (to G.J.P.), GM055667 (to M.E.P.), GM51173 (to W.S.S.), GM030626 (to G.B.W.), and GM051293 (to S.M.K.), and by the Robert W. Booth Endowment (to G.B.W.), a Grant-in-Aid for Scientific Research (C) from MEXT (to T.Y.), and a grant from the Ministry of Education, Culture, Sports and Technology of Japan (to R.K.). M.W. is supported by grants to W.S.S. from the National Institutes of Health (GM051173) and the National Institute on Alcohol Abuse and Alcoholism (P50-AA-13575). E.F.Y.H. was supported in part by the Jane Coffin Childs Memorial Research Fund and the NIGMS Center for Systems Biology (GM068763).

References

Bell CW, Fronk E, Gibbons IR. 1979. Polypeptide subunits of dynein 1 from sea urchin sperm flagella. J Supramol Struct 11: 311–317.

Biegert A, Soeding J. 2009. Sequence context-specific profiles for homology searching. Proc Natl Acad Sci USA 106: 3770–3775.

Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM. 1999. *Drosophila* roadblock and *Chlamydomonas* LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 146: 165–180.

Brokaw CJ. 1999. Computer simulation of flagellar movement. VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal. Cell Motil Cytoskeleton 42: 134–148.

Brokaw CJ, Kamiya R. 1987. Bending patterns of *Chlamydomonas* flagella. IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 8: 68–75.

Cole D. 2009. Intraflagellar transport. In: Witman GB, editor. The *Chlamydomonas* Source Book, Vol.3: Cell Motility and Behavior. San Diego: Elsevier. pp 71–113.

Dagoneau N, Goulet M, Geneviève D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L, Cavalcanti D, Delezoide AL, Serre V, Le Merrer M, Munnich A, Cormier-Daire V. 2009. *DYNC2H1* mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 84: 706–711.

Dutcher SK, Harris E. 1998. *Chlamydomonas reinhardtii*. Trends in Genetics Genetic Nomenclature Guide. Cambridge, UK: Elsevier Science Ltd., pp S18–S19.

Dutcher SK, Gibbons W, Inwood WB. 1988. A genetic analysis of suppressors of the PF10 mutation in *Chlamydomonas reinhardtii*. Genetics 120:965–976.

Escudier E, Duquesnoy P, Papon JF, Amselem S. 2009. Ciliary defects and genetics of primary ciliary dyskinesia. Paediatr Respir Rev 10:51–54.

Harrison A, Olds-Clarke P, King SM. 1998. Identification of the *t* complex-encoded cytoplasmic dynein light chain Tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J Cell Biol 140: 1137–1147.

Hozumi A, Satouh Y, Makino Y, Toda T, Ide H, Ogawa K, King SM, Inaba K. 2006. Molecular characterization of *Ciona* sperm outer arm dynein reveals multiple components related to outer arm docking complex protein 2. Cell Motil Cytoskeleton 63: 591–603.

Kagami O, Kamiya R. 1992. Translocation and rotation of microtubules caused by multiple species of *Chlamydomonas* inner-arm dynein. J Cell Sci 103: 653–664.

Kamiya R, Okamoto M. 1985. A mutant of *Chlamydomonas reinhardtii* that lacks the flagellar outer dynein arm but can swim. J Cell Sci 74: 181–191.

Kamiya R, Kurimoto E, Muto E. 1991. Two types of *Chlamydomonas* flagellar mutants missing different components of inner-arm dynein. J Cell Biol 112: 441–447.

King SM, Kamiya R. 2009. Axonemal dyneins: assembly, structure and force generation. In: Witman GB, editor. The *Chlamydomonas* Source Book, 2nd ed. Vol.3: Cell Motility and Behavior. San Diego: Elsevier. pp 131–208.

King SM, Barbarese E, Dillman JF,III, Patel-King RS, Carson JH, Pfister KK. 1996. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved $M_{\rm r}$ 8,000 light chain. J Biol Chem 271: 19358–19366.

Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, Knowles MR, Zariwala MA. 2009. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med 11:473–487.

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak

■ 564 Hom et al. CYTOSKELETON

I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR. 2007. The *Chlamydomonas* genome reveals the evolution of key animal and plant functions. Science 318: 245–250.

Merrill, AE, Merriman B, Farrington-Rock C, Camacho N, Sebald ET, Funari VA, Schibler M.J, Firestein MH, Cohn ZA, Priore MA, Thompson AK, Rimoin DL, Nelson SF, Cohn DH, Krakow D. 2009. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet 84: 542–549.

Mitchell DR, Rosenbaum JL. 1985. A motile *Chlamydomonas* flagellar mutant that lacks outer dynein arms. J Cell Biol 100: 1228–1234.

Morris RL, Hoffman MP, Obar RA, McCafferty SS, Gibbons IR, Leone AD, Cool J, Allgood EL, Musante AM, Judkins KM, Rossetti BJ, Rawson AP, Burgess DR. 2006. Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly. Dev Biol 300: 219–237.

Moss AG, Gatti JL, Witman GB. 1992a. The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond. J Cell Biol 118: 1177–1188.

Moss AG, Sale WS, Fox LA, Witman GB. 1992b. The alpha subunit of sea urchin sperm outer arm dynein mediates structural and rigor binding to microtubules. J Cell Biol 118: 1189–1200.

Ogawa K, Takai H, Ogiwara A, Yokota E, Shimizu T, Inaba K, Mohri H. 1996. Is outer arm dynein intermediate chain 1 multifunctional? Mol Biol Cell 7: 1895–1907.

Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H. 2008. Ktu/PF13 is required for cytoplasmic preassembly of axonemal dyneins. Nature 456:611–616.

Pazour GJ, Dickert BL, Witman GB. 1999. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144: 473–481.

Pfister KK, Fay RB, Witman GB. 1982. Purification and polypeptide composition of dynein ATPases from *Chlamydomonas* flagella. Cell Motil 2: 525–547.

Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EMC. 2006. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2: e1.

Piperno G, Luck DJ. 1979. Axonemal adenosine triphosphatases from flagella of *Chlamydomonas reinhardtii*. Purification of two dyneins. J Biol Chem 254: 3084–3090.

Porter ME, Johnson KA. 1983. Characterization of the ATP-sensitive binding of *Tetrahymena* 30S dynein to bovine brain microtubules. J Biol Chem 258: 6575–6581.

Porter ME, Bower R, Knott JA, Byrd P, Dentler W. 1999. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in *Chlamydomonas*. Mol Biol Cell 10: 693–712.

Sakakibara H, Nakayama H. 1998. Translocation of microtubules caused by the $\alpha\beta$, β and γ outer arm dynein subparticles of *Chlamydomonas*. J Cell Sci 111: 1155–1164.

Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve *de novo* gene finding. Bioinformatics 24:637–644.

Wickstead B, Gull K. 2007. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8: 1708–1721.

Wilkes DE, Rajagopalan V, Chan CWC, Kniazeva E, Wiedeman AE, Asai DJ. 2007. Dynein light chain family in *Tetrahymena thermophila*. Cell Motil Cytoskeleton 64: 82–96.

Wilkes DE, Watson HE, Mitchell DR, Asai DJ. 2008. Twenty-five dyneins in *Tetrahymena*: a re-examination of the multidynein hypothesis. Cell Motil Cytoskeleton 65: 342–351.

Yagi T, Minoura I, Fujiwara A, Saito R, Yasunaga T, Hirono M, Kamiya R. 2005. An axonemal dynein particularly important for flagellar movement at high viscosity: implications from a new *Chlamydomonas* mutant deficient in the dynein heavy chain gene DHC9. J Biol Chem 280: 41412–41420.

Yagi T, Uematsu K, Liu Z, Kamiya R. 2009. Identification of novel dyneins that localize exclusively to the proximal portion of *Chlamy-domonas flagella*. J Cell Sci 122:1306–1314.

Yamamoto R, Hirono M, Kamiya R. 2010. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J Cell Biol 190: 65–71.