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We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and
three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation
and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object recon-
structions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)].
Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has signifi-
cantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to au-
tomatically balance maximum-likelihood estimation and object regularization, which significantly decreases
the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using syn-
thetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm
to be effective for experimental data from adaptive optics—equipped telescope systems and wide-field

microscopy. © 2007 Optical Society of America

OCIS codes: 100.1830, 100.3020, 100.3190, 010.1080, 180.0180, 180.6900.

1. INTRODUCTION

Images acquired using any optical system are fundamen-
tally limited in resolution by diffraction and corrupted by
measurement noise. Aberrations intrinsic to the optical
system and imaging medium result in further degrada-
tion and distortions of the observed images. In ground-
based astronomical imaging, atmospheric turbulence is
the primary source of aberrations. In microscopic and bio-
logical imaging, significant aberrations arise as a result of
index-of-refraction inhomogeneities within the sample
under study.

Aberration artifacts can be largely corrected using
adaptive optics (AO) methods.! Limited by the spatial
and/or temporal response of AO hardware, however, such
corrections remain imperfect. AO-corrected images are of-
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ten contaminated by residual blurring that can signifi-
cantly reduce the contrast of fine image details. Signifi-
cant denoising and improved image contrast can be
obtained using post-acquisition deconvolution tech-
niques,2 implying that both hardware and software cor-
rection strategies are needed for optimal image recovery.

Deconvolution is an explicit attempt to model and com-
putationally compensate for measurement nonidealities.
Classic approaches presume that the imaging point-
spread function (PSF) of the optical system is exactly
known. In practice, however, the PSF is estimated either
‘cheore‘cicz’;ﬂly?’’4 or by imaging a subresolution pointlike
object (e.g., guide star or fluorescent bead).>® Such esti-
mates may deviate significantly from the true PSF, yet no
margin is given in classical methods for the PSF to adjust
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to a more appropriate estimate. Using a fixed, imperfect
PSF thus inherently limits one’s ability to generate the
most accurate and highest-resolution object reconstruc-
tions.

Myopic or blind deconvolution approaches allow an im-
precise or unknown PSF estimate to adapt to a more cor-
rect form and thereby offer the possibility of improved ob-
ject reconstructions over classical methods. The success of
these myopic-blind methods, however, is dependent upon
a priori constraints that compensate for the lack of infor-
mation associated with having the PSF be variable.” !

In this paper, we describe an adaptive image deconvo-
lution algorithm (AIDA) for myopic deconvolution of two-
dimensional (2D) and three-dimensional (3D) image data
within a maximum a posteriori framework. AIDA is a de
novo implementation and extension of the MISTRAL
(Myopic Iterative STep-preserving Restoration ALgo-
rithm) method, originally developed by Mugnier and
co-workers'? to effectively deconvolve a broad range of as-
tronomical targets with superior photometric restoration
and sharp-edge feature preservation. We have signifi-
cantly improved AIDA’s run-time performance over the
original MISTRAL implementation and have developed a
simple yet effective scheme to balance maximum-
likelihood estimation with object regularization in the de-
convolution process. Moreover, AIDA has capabilities to
process multiple image frames simultaneously, thereby
leveraging the information available through multiple
observations.>!! In Section 2, we present the deconvolu-
tion approach. In Section 3, we describe how AIDA was
implemented and describe our automatic regularization
scheme. In Section 4, we demonstrate AIDA’s effective-
ness on both synthetic and experimental single-frame
data. In Sections 5-7, we present the application of AIDA
to multiple-image-frame data and 3D images. We con-
clude with a survey of possible algorithmic improvements
and applications, offering AIDA as an open-source alter-
native to MISTRAL for further development.

2. ADAPTIVE DECONVOLUTION APPROACH

A. Imaging Model

Consider an image, i(r), of an object, o(r), observed
through a telescope or microscope system and measured
using a CCD detector array. This image may be viewed as
a probabilistic mapping of the object’s brightness distribu-
tion to an intensity count distribution sampled over the
discrete pixel/voxel position, r:o(r)—i(r). Assuming that
(i) image formation is linear and space invariant
(isoplanatic approximation), (ii) the response of each CCD
pixel element is equivalent and independent of all others,
and (iii) signal-independent Gaussian and signal-
dependent Poisson noise sources are present,'® the image
formed can be described by the following equation:

i(r)=o(r) ® h(r) o nip(r) + Aig, (1)
g(r)

where h(r) is the PSF, g(r) denotes the noise-free image,
nig(r) is a Gaussian random variable characterized by
variance o2, and np(r) represents a stochastic Poisson
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process with variance a'lz)zg(r). The operator, ®, denotes
a convolution, and ° denotes a pixel-by-pixel operation.
While the response of CCD pixel elements is rarely uni-
form in practice, we will assume that any nonuniformity
can be accounted for through image flat fielding with neg-
ligible effect on the validity of Eq. (1). Moreover, we as-
sume that if any constant image background is present, it
can be subtracted from i(r) so that 715(r) is zero centered.

When both Gaussian and Poisson noise sources are
present and images are not photon-limited, a nonstation-
ary but additive weighted-Gaussian noise model with
variance

w(r) = 0% ) (x) = 0% + oB(r) )

is a very good approxima‘cion.lz’14 With this noise model,
the operator ° in Eq. (1) may be replaced by simple addi-
tion, and Eq. (1) may also be expressed as

I(k) = O(k)H (k) + N(k), (3)

where capitalization denotes the Fourier transform of the
variable, H(Kk) is the optical transfer function (OTF), and
k is the conjugate spatial frequency. For brevity, the de-
pendence on r and k will often be implicit hereafter.

B. Bayesian Deconvolution Framework

The goal of deconvolution is to invert Eq. (1). Classical de-
convolution approaches aim to find the best estimate, 6, of
the true object given a single image frame, i, and an ex-
actly known PSF convolution kernel, 4. Such approaches
are ill-posed (lacking a unique solution, or having a solu-
tion that is discontinuous with respect to the data) and ill-
conditioned (numerically sensitive to small errors and
thus unstable) for two reasons: (1) £ is intrinsically band-
limited by the resolution limit of the optical system, and
(2) noise is present at frequencies beyond the band
limit.>'® This situation is further complicated in the case
of myopic or blind deconvolution where the characteristics
of the PSF kernel are poorly known, if at all. Because of
ill-posedness, the quality of the deconvolution depends
critically on the quantity and quality of a priori informa-
tion that is incorporated into the inversion process.®'®
This a priori information can be divided into three classes
related to 72, o0, and h.

Owing to the presence of noise, deconvolution may be
viewed as a problem of stochastic inversion. It is helpful
to state the goal of deconvolution in Bayesian terms,
namely, to maximize the a posteriori probability of observ-
ing the object, o, and PSF, A, given an image, i, and a set
of model assumptions, a,

' p(ilo,h,a)p(ola)p(hla)
p(o,hli,a) = - . (4)
plila)

p(ilo,h ,a) is the posterior probability density of observing
an image, i, as expressed by the forward-imaging equa-
tion, Eq. (1). This term is the focus of maximum-
likelihood methods, which aim to optimize the fidelity of
the observed data to a set of parameters and subject to a
particular noise model. p(o|a), p(h|a), and p(i|a) are the
a priori probability distributions for the object, PSF, and
image, respectively. These a priori distributions must be
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inferred based on the assumptions, a. In classical decon-
volution methods for which the PSF is known, for ex-
ample, p(h|a) is assumed to be a constant. In maximum-
entropy deconvolution methods, p(o|a) is set implicitly by
the definition of the entropy measure used.!” When the
positivity of the variables 0,4, and i can be assumed (e.g.,
under incoherent imaging conditions), the a priori prob-
abilities for negative values can be set to zero.

Each probability term in Eq. (4) may be interpreted as
a Gibbs distribution with an energy cost function, J(x),
and partition function, Z(x)= [, exp[—<J (x)]dac,lg’19

p(x) = exp[-J(x)VZ(x), (5)
so that
plo,hli,a) = exp[-J(o,hli,a))/Z
= (22, 2,2, Z)exp| - J,(i|o,h,a) - J (ola)
= J(hla) +Ji(ila)], (6)

where we have used the subscripts n to denote noise-
model-related data fidelity terms, o to denote the terms
arising from the a priori object distribution, 2 to denote
the terms arising from the a priori assumptions for the
PSF, and i to denote the terms arising from the a priori
distribution of images. The mode or best estimate for both
o and A can be found by maximizing Eq. (6) with respect
to these variables or, equivalently, by minimizing the cor-
responding negative log-likelihood, J(0,4|i,a),

[6,h], = arg min{J (0, h|i,a)}
[6,k1g
= arg min{J,(i|o,h,a) +J,(ola) + J,(h|a)}. (7)
[6,h1z
Since J;(i|a) is formally independent of variables o and &
given the set of assumptions a, we have dropped this term
in Eq. (7). We have also dropped the constant term involv-
ing the ratio of partition functions, which embodies infor-
mation on the relative normalization of the component
probability distributions [cf. Eq. (6)]; we use the subscript
Z to serve as a reminder of this.

C. Myopic Deconvolution with Edge Preservation

Our goal is to minimize Eq. (7) subject to a specific set of
model assumptions for J,,(i|o,h,a), J,(0|a), and J,(h|a).
We follow the recommendations of Mugnier et al.”” in as-
signing functional forms to each of these component
terms as detailed below.

1. Data Fidelity Term: J,(ilo,h,a)

Assuming the mixed-Gaussian noise model of Eq. (2), the
fidelity of the reconstructed object 6 and PSF h with re-
spect to the observed image i can be described by the fol-
lowing weighted maximum-likelihood term:

1, (i(r)-6(r) ® h(r))?

J,(ilo,h,a) = 52 v . (8)

Deconvolution approaches that are based solely on this
term often lead to noise amplification and severe ringing
artifacts. The Landweber method and the Richardson—
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Lucy or expectation-maximization algorithm are ex-
amples of such approaches, which assume a stationary-
Gaussian and Poisson noise model for w(r),
respectively.>17 To minimize noise amplification artifacts
and find a unique and stable solution in practice, Eq. (8)
must be regularized. In the aforementioned methods,
regularization is accomplished empirically by limiting the
number of deconvolution iterations.

2. Edge-Preserving Object Term: ],(o|a)

Equation (8) may also be regularized through a quadratic
penalty term based on an object’s spatial gradient.l‘r”16
Quadratic regularization, however, often yields results
that are oversmoothed and have compromised image con-
trast when applied uniformly to all object features. Using
a roughness penalty that is instead subquadratic for re-
gions of high contrast has been very successful in preserv-
ing edges and other sharp object features.’®?*?2 The un-
derlying assumption here is that large gradient
discontinuities in the image arise from genuine object fea-
tures and should be penalized comparatively less than
small gradients due to noisy background features. We use
the isotropic edge-preserving prior proposed by Mugnier
et al.,12 which is based on the work of Brette and Idier®:

J,(0la) =\, >, P(¥(6,6,)), 9)

P(y)=y-In(1+7y), (10)
IVo(r)ll

¥(0,6,) = ( ) (11)

where [IVo(r)ll =[(Vx[)(r))2+(Vyé(r))2+(V26(r))2]1/2 is the
norm of the spatial gradient of the object, 6, and \, are
auxiliary parameters or hyperparameters of the object
prior distribution, y is a reduced gradient modulus, and
®(y) is called the clique potential. ®(y) is a function that
characterizes the local object texture at a position r based
on a subset or clique of neighboring pixels. This clique is
defined in practice through the calculation of the gradient
norm in Eq. (11). For large values of y, ®(y)= vy, whereas
for small values of y, ®(y)=y—(y—y2/2++")=12/2, re-
sulting in so-called L1-L2 (linear—quadratic) behavior.
Numerous L1-L2 regularization functionals have been
suggested in the literature (e.g, see Teboul et al.??). The
advantage of Eq. (10) over other forms is that it is convex
and its derivative with respect to 6 does not involve any
transcendental or exponential functions, making cost
function optimization easier and less expensive (see Sub-
section 3.C).

The scaling parameter A\, plays an important role in
balancing maximum-likelihood fidelity to the data, with
the preservation of high-contrast features in the object es-
timate. The hyperparameter, 6,, sets the width and shape
of the Gibbs distribution in Eq. (5). It governs the point at
which regularization transitions from being quadratic to
being linear. In Mugnier et al’s treatment,' the same
scalar pair of values (\,, 6) is applied to each pixel ele-
ment of the object. We have found that using an inhomo-
geneous hyperparameter model as advocated by
others, 2?7 in which 6, is pixel/voxel dependent (as indi-
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cated by the subscript) and adapted to the local object tex-
ture, results in better deconvolution results.

3. Harmonic OTF Constraint: J,(h|a)
To myopically reconstruct the PSF, the following Fourier
domain constraint is used:

N [H(K) - H(k)[?

Jy(hla) = —>,

R R a— (12)

where Ny controls the degree of the OTF regularization
constraint relative to the data fidelity term [Eq. (8)], Hk)
is the true estimate of the OTF, H(k) is a measured OTF,
and the overbar denotes an average over [ measured OTF
samples. v(k) is the OTF sampling variance or power
spectral density defined as

‘2

o) = (| H,0) - )| ), = (|02, - [HO)[". (13)

v(k) serves as a spring constant to harmonically constrain
each OTF k& component to a mean value, consistent with a
set of measured OTFs. Equation (12) intrinsically handles
band-limitedness of the OTF; frequencies beyond the op-
tical system’s resolution are essentially ignored, since
they are not represented in the measured samples. Conan
and co-workers?®?® have shown that this harmonic OTF
constraint performs noticeably better toward recovering
the true OTF than a simple band-limited constraint typi-
cally used in blind deconvolution methods.”®° An har-
monic constraint for each spatial frequency, |k|, which is
functionally equivalent to using a radially averaged v(k),
may be used, although we have found that using the less
stringent constraint, Eq. (12), is sometimes more robust.

D. Extension to Multiple-Frame Data
The focus thus far has been on a single image frame. One
of our goals in developing AIDA was to combine the dem-
onstrated strengths of MISTRAL with the multiple-frame
synthesis capabilities available in a method such as
IDAC, the Iterative Deconvolution Algorithm in C.23%31
Christou et al.?! have argued that the use of multiple ob-
servations can serve as an additional deconvolution con-
straint: the ratio of unknown variables to measured quan-
tities being reduced from 2:1 for a single image frame to
(M +1):M for M image frame observations. The simulta-
neous analysis of multiple observations implicitly ac-
counts for correlations that may exist among variables as
well as between variables and the data.®? Consequently,
multiple-frame deconvolution should result in systemati-
cally lower error bounds with more reliable results than
when individual image frames are deconvolved separately
or when multiple frames are merged into an averaged
“shift-and-added” image (i.e., an image generated by av-
eraging the image frames after appropriate pixel shifts
are made to maximize image correlation) and then
deconvolved.>11:33-36

The extension to multi-frame deconvolution is straight-
forward. For multiple-image observations, Eq. (1) may be
expressed generally in vector form:
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i1=01®h1+ﬁ1,

L = h g : § >
TR i —omhy i, (19

_ 5 &)
lM=OM®hM+TLM

where ® specifies a convolution performed over appropri-
ate o;:h; pairs and we have assumed the noise model of
Eq. (2). In general, for M; measured images, there may be
M, unique objects and M} unique PSFs: M, =M;=M,,. In
addition to mono-frame data sets where M;=M,=M;,=1,
we consider two multi-frame data-set types in this work:
(i) multi-PSF data sets where M;=M,, and M,=1 and (ii)
multi-object data sets where M;=M, and M;,=1. Multi-
PSF deconvolution may be used to process AO images for
which there is a common target object but a variable PSF
per image observation. Multi-object deconvolution may be
used to process time-lapsed microscopy images for which
a single common PSF does not change significantly be-
tween frames.

The cost function to be minimized for multi-PSF decon-
volution is given by

1201 | (ig-6®hpy?
JMﬁPSF(O,h|i7a) = 52 |:E -

B Lr Wg

|H - HJ?
S S a(46,6,)
s k v r
(15)
and for multi-object deconvolution by
M S a7
° (i,—0,®h)
It abject(0,hl1,0) = | [E (—
B @ r 2wa
Moo [H-H?
+\, D(H0,, 0, a)))} =
« ’ 2 k v
(16)

where « and B are used to index multiple objects and
PSF's, respectively.

3. IMPLEMENTATION STRATEGY

A. Algorithmic Overview

We implemented AIDA using Numerical
Python-Numarray,®’” with calls to a specialized C++ con-
jugate gradient (CG) optimizer (see Subsection 3.B),
which were handled by code generated using the Simpli-
fied Wrapper and Interface Generator®®®® (SWIG). Fast
Fourier transforms were computed using the FFTW (ver-
sion 2.1.5) subroutine library?® (see also http:/
www.fftw.org) in lieu of the standard Numarray FFTPACK
library, resulting in about a factor of 2 improvement in
the overall speed of the algorithm. A schematic of the al-
gorithm is shown in Fig. 1.
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AIDA begins with a preprocessing stage to estimate scale factor by which to multiply the automatic estimates
data fidelity weights, w (see below, Subsection 3.C), and is available for fine-tuning purposes. For mono-frame de-
to calculate the mean OTF, H, and OTF variance, v. It is convolutions, AIDA is also capable of performing unsuper-
assumed that all the images supplied have been properly vised deconvolutions over a grid of \, and ¢, hyperparam-
flat fielded and optionally background subtracted. In eter values centered about automatic estimates or user-
cases where the image does not have negative pixels fol- defined centers.
lowing background subtraction (as is the case for an im- Although it is possible to sinAlultaneously estimate both
age without true dark areas), the user must supply either sets of objects, 6, and PSFs, h, by stacking them into a
a value for o or a dark image from which it can be esti- single variable to be optimized [see Eq. (7)], doing so could
mated. result in slower convergence, since significant differences

The present version of AIDA expects images of refer- in magnitude between 6 and h can result in a skewed op-
ence PSFs (e.g., of a guide star or subdiffraction-sized timization landscape and ill-conditioning.*’ Although
bead), which are normalized to 1 and used to compute H variable renormalization could solve this issue, we have
and v. If only one PSF image is supplied, v is calculated chosen instead to alternate between the minimization of 6
based on the noise statistics of the image as for w. AIDA is and h in the current version of AIDA, as advocated by
equipped with an optional clean-up module to remove Mugnier et al. 12
hot—dark pixels from these PSF images and remove noise For nonquadratic cost functions, solution convergence
according to some user-defined threshold. An option to can often be improved by periodically restarting the CG
use a radially averaged OTF variance is provided to en- minimization after a defined number of steps so as to in-
able a more stringent harmonic constraint of spatial fre- terlace steepest-descent steps with CG steps. We have
quencies (see Subsection 2.C.3). found this partial conjugate gradient (PCG) approach*! to

The default mode for AIDA uses automatic hyperpa- be more effective than a simple CG approach in minimiz-
rameter settings as described below in Subsection 3.D. ing the quasi-quadratic cost functions Eqgs. (15) and (16),
The option to directly specify hyperparameter values or a consistent with the findings of Mugnier et al.

A « Process input settings « For each image in i {14} . Initialize
’V + (Clean-up E‘SF images) CCal.culate ogand w {17} E:sz (;_1[7;] m: Zzzz::
—_— + Calculate H and v {12,13} + Estimate 6,, 4, 4, {27,32,33} éj-optimizaﬁon_count =5

h-optimization_count = 0

B C

Deconvolution

+ Initialize for X;
Ao(ﬁi) =0 (rmsd array of length M,)

+ For j =1 ton optimization rounds convergence_count=0 ; rising_rmsd_count = 0

\/

+ Estimate & (with b, fixed)

« For p = 1 to m, = PCG[j] iterations

>
g

« For g = 1 to {iterations

Constrained Conjugate Gradient
optimization of ii(p,q) (non-converged set)
{

- Calculate cost_function {15,16}
+ Calculate gradients {22,23}

N
Conjugate Gradient (CG) m, PCG iterations
Block

CG block

if 61 converged, ++6-optimization_count
else 6-optimization_count =0

“ AL(%) € 1%(p) - X(p-1)I
« For each non-converged )‘(i in )’(]

optimization round

)

Conjugate Gradient (CG) m, PCG iterations

Block + if Ay(X) < PCG_tolerance, ++convergence_count

else if Ap(ii) > Ap_1(ii), ++rising_rmsd_count
«if (convergence_count |rising_rmsd_count) == 3,
flag ii as converged

if ﬁi converged, ++h-optimization_count
else ﬁ—optimization_count =0

« if fraction of )‘(J converged > &,
++X-optimization_count
break out of PCG loop

else X-optimization_count =0

«if fz-optimization_count == max_optimization_count
& h-optimization_count == max_optimization_count,
stop

R s s st e ' o e e,

Fig. 1. AIDA optimization protocol. A: Setup and variable initialization stage. Equation numbers for variables are shown in curly brack-
ets. M, and M, are the number of objects and PSF's to be estimated, respectively. B: Deconvolution scheme. The subscript j indexes the
optimization round, which consists of two partial conjugate gradient (PCG) estimation loops (each indicated by a dashed box): one for the

object(s), 0, followed by one for the PSF(s), h. The deconvolution is stopped after a max_optimization_count number of sequential PCG
estimation loops have converged (see below). C: Schematic of the PCG estimation loop used to estimate the object(s) or PSF(s) [indicated
generically by the variable (X;)] for the jth optimization round. A, is an M,- or M,-length array of root-mean-square deviations between
sequential PCG iterations used to monitor convergence progress. Minimization of each %; in X; is continued until A, falls below some
PCG _tolerance for a total of convergence _count times or until a rising_rmsd _count number of uphill moves is registered (default=3 for
both). Each PCG iteration entails a steepest-descent minimization step followed by up to {—1 conjugate gradient (CG) steps for the set
of unconverged object or PSF estimates. When the fraction of object(s) or PSF(s) that have converged is >¢, the PCG estimation is
stopped, and convergence for that PCG estimation loop is noted.
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Starting with each PSF in h set to the mean of the
sampled PSFs (F-[H]), each object in 6 is optimized via a
PCG approach. CG optimization is capped by a set num-
ber of iterations, ¢ (typically 25), constituting a CG block
and repeated for 7, PCG iterations. The resulting esti-

mate for 6 is then fixed, and each PSF in h is optimized

via , PCG iterations. The multi-frame estimates 6 and h
are alternatively optimized, with each pair of estimations
constituting one AIDA optimization round. The number of

PCG iterations per optimization round for 6 and his typi-
cally increased progressively, with the possibility of sepa-

rate PCG iteration plans for 6 and h. By default, the
number of PCG iterations executed per optimization
round is given by PCG[j]=2(j—1)+1, where j is the opti-
mization round, from 1 to », the maximum default num-
ber of optimization rounds (typically 8). Progressively in-
creasing the number of PCG iterations in this manner
ensures that the optimization of the current variable (e.g.,
0) does not get fixed too quickly relative to the other vari-

able (e.g., fl), which may yet be suboptimal. Multi-frame
optimization of 6 and h is continued until the fraction of

individual 6; and fzj frame estimates that have converged
is greater than some tolerance, £ (typically >0.9), or until
a specified maximum number of optimization rounds is

reached. The convergence of each 6; or ﬁj frame optimiza-
tion is achieved when the root-mean-square deviation be-
tween two consecutive PCG iteration estimates falls be-
low a specified tolerance for at least three times within
one optimization round. We have found these default set-
tings sufficient for processing most data sets; stricter
convergence—stopping criteria typically do not yield sig-
nificantly improved results.

B. Constrained Conjugate Gradient Minimization

AIDA’s quasi-quadratic cost function was minimized us-
ing a constrained CG algorithm developed by Goodman
and co-workers?? and is freely available as part of the
EDEN Holographic Method package.*®** This algorithm
incorporates three significant advances over the conven-
tional CG method.*? First, to ensure that solutions are
positive (or within a user-specified bound), a projected
gradient or active sets approach is used.*! Johnston et
al.*® have shown that such an approach is superior to
maintaining solution positivity via reparametrization,
since reparametrization often leads to the creation of spu-
rious minima that can complicate the optimization pro-
cess. Second, to prevent zig-zagging behavior that can
arise when using an active sets approach or minimizing
nonquadratic functions, an adaptive bending line search
is used to set the most effective conjugate direction step
size (typically called «). Third, to better preserve conju-
gacy between successive directions, the CG deflection pa-
rameter (typically called B) is computed using the
Hestenes—Stiefel formula instead of the standard
Fletcher—Reeves or Polak—Ribiere formula.*!

C. Cost Function and Derivative Calculations

To facilitate modification and future developments of
AIDA, the calculation of the cost function was written in
an extensible manner in which cost function terms may
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be turned on or off. For computational efficiency, only
terms that are dependent upon the variable being esti-
mated are computed (e.g., for ¢;, data fidelity and object
regularization terms, but not the OTF constraint, are
computed).

The data fidelity weights for each image frame, w(r)
[see Eq. (8)], can be computed as a sum of Gaussian and
Poissonian contributions according to Eq. (2) as proposed
by Mugnier et al.'%:

w() = ()=o)’ + maxli,0L (1)
% %

The first term accounts for Gaussian detection—electronic
readout noise, 0%, which can be estimated using the aver-
age over all negative pixels in the image. For images of
extended objects that do not have any negative-pixel ar-
eas (common in microscopy), a separate dark image is re-
quired from which 02G can be computed directly. The sec-
ond term in Eq. (17) accounts for Poisson photonic noise,
o%; this term is derived from the fact that the variance
equals the mean and the mode for a Poisson distribution.
Although this term should technically be determined us-
ing a noise-free image estimate, o%=max[3(r),0], we did
not observe a significant improvement in deconvolution
quality to merit using this more accurate though algorith-
mically complicated approach.

The estimates for the variances in Eq. (17) implicitly
assume that i has been properly background subtracted
so as to lead to a properly centered and sampled Gaussian
distribution for readout noise. Only noise arising from the
image formation is accounted for here. “Scientific noise”
(e.g., cellular autofluorescence in microscopy imaging),
which may be irrelevant to image features of scientific in-
terest, are not accounted for here explicitly but treated as
an optically genuine component of the object under obser-
vation.

The clique potential [see Eq. (10)] used for edge-
preserving object regularization requires that effective
spatial gradients of the object estimate be computed. This
can be done efficiently by convolving the object estimate
with a gradient mask:

V,6(r) =6(r) ® xG,, (18)

where G,, is a 3 X 3 matrix operator corresponding to the
gradient of interest in the direction r and y is a scaling
normalization factor. Many different gradient masks that
have been developed for image segmentation may be
used.}™*" We prefer masks based on the work of Frei and
Chen,*8 since it is equally effective on horizontal, vertical,
and diagonal edges, and we have found these operators to
be more effective in recovering subtle object features than
traditional nearest-neighbor finite-difference approxima-
tions (see, e.g., Press et al., Section 5.7%%). In two dimen-
sions this is given by
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1 0o -1 -1 -2 -1
G,=|\2 0 -\2|; G,=|0 0 0|,
1 0 -1 1 V2
(19)

and in three dimensions it is given by

1 0 -1
G.=|(0),[\2 0 -2/}
1 0 -1
IS
-1 -2 -1
G,=|(0),| 0 0 ,(0) |;
1 V2
0 -1 0 0 1 0
G.=¢ -\2  0[,0),)0 2 off
0 -1 0 0 1 0

(20)

where y=(2+ \2)~1 and « is a z-resolution compensation
factor. In 3D microscopic imaging, the OTF support in the
axial direction is significantly smaller than in the radial
direction. This leads to a greater loss of information and
thus increased blurring in the z direction relative to the x
or y direction; « is used compensate for a more diffuse and
uncertain gradient observed in the z direction of the im-
age stack so that axial and lateral gradient information
are on equal footing. Given the lateral and axial resolu-
tions of a microscope, r,, and r,, « can be estimated as
Kk~Ty/r,. If we define optical resolution as the distance
between the central maximum and the first minimum of
the lateral or axial component of a PSF Airy disk, the lat-
eral and axial resolutions of a microscope are given by
Tey=0.6N,,/NA and r,=2\,,n/NA?, where \,, is the
wavelength of light, n is the index of refraction of the
sample, and NA is the numerical aperture of the micro-
scope objective lens.*® Thus,

k~3.33n/NA, (21)

and, using values typical in microscopic imaging (n
~1.33, NA=14), k=3.

Minimizing the AIDA cost function [Eq. (15) or (16)]
with the CG method requires analytical derivatives with
respect to both object and PSF estimates. These can be
determined through functional differentiation® and are
given by

o | Neses (6, @hs—ig N[ V%,
—=) 2 hp | ————— (v |
O\ 1+ 0., 6,)

(22)
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ENs Nobjects . <6a ® };'ﬁ_ ia)
_ _ O x| ———
ﬁhﬁ a W,
Ng+1) | Hy-H)
+ )\h F- ) (23)
B2 v

where x denotes a correlation. In practice, the terms in
curly brackets are computed in the Fourier domain, in ac-
cordance with the convolution- and correlation-Fourier
theorems.*>! We assume that the arrays (or region-of-
interest subarrays) used in Fourier calculations are suffi-
ciently padded so that boundary aliasing problems can be
ignored. In computing the derivative of the OTF con-
straint with respect to & [rightmost term in Eq. (23)], we
have used the property of the discrete Fourier transform,
Flx"]1=N,F x], where x* is the conjugate of x.

The spatial Laplacian of the object in Eq. (22) may be
computed by convolving the spatial object gradient with a
gradient mask [cf. Eq. (18)] as proposed by Mugnier et
al.%? Alternatively, the object may be convolved directly
with the following Laplacian operator mask, which we
find to be faster and yield finer results:

V2 =6(r) ® XL, (24)

where in two dimensions

1 -1 -2 -1
=— L=(-2 -12 -2 25
X=1g (25)
-1 -2 -1
and in three dimensions
1
AT
-1 -1 -1] [-« -2k -k
L=||-1 -2k -1|, |-2« 16(1 + ) -2k,
-1 -1 -1] - K -2k - K
-1 -1 -1]]
-1 -2« -1}, (26)
-1 -1 -1

where « once again compensates for the relative loss in
resolution in the z versus xy directions (typically ~3).

D. Automatic Hyperparameter Estimation

Methods to estimate the hyperparameters that tune ob-
ject regularization terms such as Eq. (9) have been a sub-
ject of considerable attention.?* 27535 A number of ap-
proaches have been advocated including L-curve analysis
and generalized cross validation.?*®® These heuristic
methods are computationally expensive, essentially re-
quiring that multiple deconvolutions be performed over a
grid of \, values for each image to be processed. Other
more advanced and theoretically rigorous approaches at-
tempt to optimize hyperparameters jointly with object
reconstruction.’*%®*° These methods aim to maximize the
marginal likelihood of observing the measured image
given an incomplete data set over the space of hyperpa-
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Fig. 2. Subset of reference objects used to test AIDA and establish its automatic hyperparameter estimation scheme. Each object (with
maximum intensity set to 100, 1000, or 10,000) was blurred with a Gaussian PSF (FWHM=4 pixels), had intensity-based Poisson noise
and Gaussian detector noise added according to Eq. (34) to yield a series of images with SNR=-10, -3, 0, 7, 10, 17, 20, or 27 dB.

rameters: (@r,xo)=arg maxg Dp(il@,,)\o); this is function-
ally equivalent to maximizing the ratio of partition func-
tions, Z/Z,Z, lcf. Eq. (6)], with respect to the
hyperparameter variables.2”* In practice, these methods
require nontrivial Monte Carlo expectation-maximization
sampling steps prior to object reconstruction, which in-
creases the computational expense of a deconvolution
considerably.?*®” In contrast to all of these methods, our
AIDA approach directly calculates hyperparameter esti-
mates using a semiempirically-based scheme, forgoing
any stochastic sampling steps or comprehensive grid
searching.

Our initial efforts to derive an automatic scheme were
founded upon a large collection of deconvolution results
generated over a grid of 6, and \, values spanning several
orders of magnitude. We used a variety of different 2D ob-
ject types and natural scenes to build a reference set of
images covering a broad range of signal-to-noise ratios. A
subset of these reference objects is shown in Fig. 2. These
reference images were used to assess deconvolution qual-
ity as a function of hyperparameter pairs. From a grid
search over hyperparameters, a plane of acceptable
(6.,\,) solutions (determined by visual inspection) was
found to exist, in agreement with observations by Jalo-
beanu et al.?® This finding implies that one hyperparam-
eter may be defined while the other hyperparameter is op-
timally adjusted to balance data fidelity with object
regularization. Within the AIDA cost function framework
for a single image frame, we found a balance can be
achieved by setting 6, according to

01. = VLU(I‘)/O'G (27)

and computing \, directly via the approach detailed be-
low. The form of §, was motivated by general trends ob-
served in the aforementioned set of grid search results as
well the desire for a simple scalar form for A\, (see below).

From Eqgs. (8) and (9), the following partition function-
like integrals may be defined over the distribution of pos-
sible data-model variations, 5=i—o®h, and the distribu-
tion of possible gradient norm values for each pixel
element:

Lr)s= f exp[- (6,)*/2w(r)]ds, (28)
3

o f { \ (|VO(I‘)||
Lo(®)livor = - exp| — A, o)
. (1 IIVo(r)I)) a4 -

—-In{1+ = IVo(r)ll. (29)

A convenient relation linking 6, and A, can be obtained by
equating these integrals:

&(0)]s= £(0)ivons

o

V2mw(r) = Gre}‘OJ et/ Modt

1

1
%0,. )\—+1 , (30)

(]

where the approximation holds for \,<10. The element-
by-element equivalence of these integrals essentially as-
sumes that the behavior of each pixel/voxel element can
be decoupled and that the Gibbs distribution (and thus
partition function Z) of Eq. (5) can be represented as a
product of separable functions (i.e., a mean-field
approximation).E9 Equating these integrals effectively de-
fines the balance of maximum-likelihood estimation with
edge-preserving regularization: it is achieved by properly
normalizing the probability distributions for data fidelity
and object gradient norms with respect to one another. In
more rigorous marginal likelihood-based hyperparameter
estimation approaches,?***5"59 partition functions over
primitive model variable(s) (e.g., i or o) are used, which
lead to nonanalytical equalities that require expectation-
maximation sampling in order to be solved. Our scheme
estimates the sum over all states using conglomerate
variables instead [Eqgs. (28) and (29)], leading to the ap-
proximate though analytical relation of Eq. (30). Solving
for )\, in expression (30):

Ao = (V27w (r)/6,— 1)71. (31)

This definition, along with the vector definition of 6,, Eq.
(27), leads to a simple, pixel-independent scalar expres-
sion for \,:
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)\0=(\127T0'G— 1)_1. (32)

From Eq. (17) and given the quantized nature of real,
noisy data, o is guaranteed to be =+7/2 such that 6, and
\, are well defined by Eqgs. (27) and (32). Using w(r) as
defined in Eq. (17) and object gradients and Laplacians
calculated according to expressions (18)—(26), this estima-
tion scheme is quite robust for data with PSF's of compact
spatial extent (effective FWHM =<8 pixels). For imaging
data with spatially extended or oversampled PSFs, the
pixel-by-pixel integral equivalence approximation used in
Eq. (30) breaks down and can lead to somewhat overregu-
larized results. In such cases, scaling the single scalar hy-
perparameter estimate, \,, down by typically no more
than a factor of 10-100 is sufficient to generate optimal
reconstructions. It is important to note that careful esti-
mates of o5 and w(r) in accordance with Eq. (17) are im-
portant for the success of this estimation scheme.

For the OTF constraint, a quadratic term in real space
[Eq. (8)] must be balanced with a quadratic term in Fou-
rier space [Eq. (12)]. Consistent with the fast Fourier
transform®’ normalization scheme used in our algorithm,
we have found that this balance can be approximately
achieved by setting

)\H= 1/Nd7 (33)

where N, the number of pixel/voxel elements, is as-
sumed. The heuristic motivation for this comes from the
power conservation relation of Parseval’s theorem for dis-
crete Fourier, transforms, in which SN&1|x(r)2
=(1/N =G |%(R)|>.

4. VALIDATION AND APPLICATION TO
MONO-FRAME DATA

In Fig. 3, we present classical deconvolution results for
one of our synthesized data sets to demonstrate the effec-
tiveness of the automatic estimation scheme. The brain
object (256 X 256 pixels) shown in Fig. 3(A) is from a
magnetic-resonance imaging (MRI) scan available from
the Computer Vision Group at the University of
Granada.®® This object was convolved with a Gaussian

A SNR=0 dB SNR=10 dB

image (7)

decon (6)
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PSF of FWHM of 4 pixels and normalized to a maximum
intensity of 1000. This noise-free image, g(r), was sub-
jected to a Poisson noise transformation. Varying
amounts of Gaussian noise were subsequently added
(mimicking CCD detector readout noise) according to a
predetermined image signal-to-noise ratio (SNR), which
we define as

var[g(r)]

SNR =101 _,
10 ),

(34)

where var[g(r)] is the variance of the noise-free image.?
Significant denoising can be observed after deconvolu-
tion [Fig. 3(B)] with a contrast enhancement of about
50%. Average contrast improvement was computed by
multiple (N=6) comparisons of average intensities over
an area of 3 X3 pixels within a region of interest (Irp;)
versus over an adjacent background region (Iyucrground)
(separated by at least 4 pixels, the FWHM of the PSF):

<IROI>area - <Ibackground>area
AContrast =

<Ibackground>area N samples
(35)
Using the definition

i -oll
ASNR =10 10g10”

(36)

~ ’
0 -oll

we see signal-to-noise improvements of 6.2, 4.2, and
2.4 dB for the deconvolution results of SNR=0, 10, and
20 dB images, respectively.

Figure 4 shows the deconvolution results for the SNR
=20 dB image of Fig. 3 over a grid of \, or 6, values that
are 20 times larger or smaller than those automatically
estimated. Using the estimated hyperparameters (Fig. 4,
center) gave the best visual results and balance between
data fidelity and regularization. Using the estimated )A\O
and a value of 6,= @r/ 20 also gave acceptable results
(though contrast was slightly compromised). In general,
the deconvolution results were generally less sensitive to
changes in 6, than )\, over the range of values examined.

SNR=20 dB

B object (o)

noise-free (g)

Fig. 3. Classical deconvolution test results using automatic hyperparameter estimation. A: Deconvolution series for image SNR of 0, 10,
and 20 dB; top, convolved image with Poisson and Gaussian noise (i); bottom, corresponding deconvolution result (6) and signal-to-noise
improvement, ASNR [Eq. (36)]. B: Top, original 256 X 256 pixel brain object with intensities from 0-1000 (0); bottom, convolved noise-free

image (g) with Gaussian PSF (k) inset (FWHM=4 pixels).
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Fig. 4. Automatic hyperparameter estimates are close to the optimum. Classical deconvolution results for the SNRI = 20 dB brain
image from Fig. 3, over a grid of A\, and 6, values that are 20X larger or smaller than those estimated automatically. Center: Deconvo-
lution result using the automatically estimated hyperparameters. Signal-to-noise improvements are shown in the lower right of each

panel.

C classical decon
using h

A object (0) B

image (i)

classical decon

myopic decon myopic decon
E F with b, & A=ho/2

(auto parameters) with xn=f»0/2

true

-

?-«-———-—-- | p———

Fig. 5. Myopic deconvolution results for a test phantom. A: The original phantom object, 0. B: The convolved and noisy phantom image,
i (SNR=17dB). C: Reconstructed object after classical deconvolution using the average of synthetically generated PSFs (see Fig. 6)

(ASNR=1.7dB). D: Reconstructed object after myopic deconvolution with automatic hyperparameter estimates and the average PSF, £,
as an initial PSF guess (ASNR=2.9dB). E: Same as D, except the hyperparameter, \,, is scaled to 1/2 of the value of the automatic
estimate (ASNR=4.2 dB). F: Reconstructed object after classical deconvolution using the true PSF [see Fig. 6(B)] with the same hyper-

parameter settings as in (E) (ASNR=3.8dB).

Although not shown, we note that AIDA’s hyperparameter
estimation scheme works equally well for a range of maxi-
mum intensity scalings (i.e., images for which the maxi-
mum intensity of the noise-free image is 100 or 10,000).
Deconvolution results were typically generated within
30-90 s per (256 X 256) image pixels on a 2.8 GHz Intel
Xeon Linux machine.

In Figs. 5 and 6, we demonstrate the capabilities of the

myopic deconvolution approach with a synthetic phantom
composed of pointlike, line, and smooth extended ele-
ments. The object in Fig. 5(A) was convolved with a true
PSF [Fig. 6(B), left] taken from a set of aberrated PSFs
generated using pupil functions with random Zernike
polynomial phase components of up to order 15
(Gaussian-distributed amplitudes with mean = 0 and
standard deviation=0.1). The resulting noise-free image
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was normalized, and Poisson and Gaussian noise was
added as described above for a combined image SNR of
17 dB [Fig. 5(B)].

Classical deconvolution of this image using a fixed av-

erage PSF (k) results in significant denoising and con-
trast enhancement (ASNR=1.7dB), although artifacts
can be seen in the reconstructed object [Fig. 5(C), bottom)].
Allowing the PSF to relax through myopic deconvolution
[Fig. 5(D)] helps to remove these artifacts and further im-
proves image contrast (ASNR=2.9 dB). Object recovery is
not perfect, however, as highlighted in the bottom panel of
Fig. 5(D): (1) dotlike features are larger than in the true
object, and two out of the three dots shown are not fully
resolved; (2) some residual haze surrounds the two inter-

A

h band-limited

Fig. 6. PSFs associated with the myopic deconvolution of the
test phantom. A: Sample PSF's used to myopically deconvolve the
test phantom data of Fig. 5. PSFs were generated as the modulus
of the Fourier transfer of pupil functions with random Zernike
polynomial phase components of up to order 15 (OSA convention;
Gaussian-distributed amplitudes with mean=0 and standard
deviation=0.1). Resulting PSFs have an average FWHM between
3 and 4 pixels. To simulate typical PSF measurements, Poisson
and Gaussian noise was added for a PSF image SNR of 17 dB. B
(from left to right): The true PSF, h,,,., used to generate Fig. 5(B);

the average PSF, &, used as the initial guess in myopic deconvo-

lution; the myopically recovered PSF, h, using a harmonic fre-
quency constraint (Subsection 2.C.3); and the myopically recov-

ered PSF, fl’band-limitedy using a band-limited frequency constraint.
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secting line elements, and the square-on-square feature is
slightly compressed in the lateral direction. The diameter
of the dots can be reduced, and the remaining haze
around the line elements can be removed by scaling the

estimated )A\o hyperparameter down by a factor of 2 (Fig.
5(E); ASNR=4.2dB). With slightly lower regularization,
however, the square-on-square feature becomes less
smooth, highlighting the intrinsic balance between noise
suppression and edge preservation. For comparison, clas-
sical deconvolution results using the true PSF and the
scaled A\, hyperparameter value are shown in Fig. 5(F)
(ASNR=3.8dB). The two lower dot features (separated
peak to peak by ~3 pixels) remain unresolvable, although
this is consistent with the resolution limitations of the
simulated PSFs (FWHM of 3—4 pixels). Stricter a priori
constraints that assume pointlike objects may lead to im-
proved separation of these features.”>! Owing to imper-
fect noise suppression, the edges of the square-to-square
feature are more jagged in the classical result versus
myopic deconvolution result, in which the PSF is allowed
to relax. The relaxation of the PSF also results in better
noise suppression and fewer noise speckles in the myopic
deconvolution result versus the classical result; this leads
to an improved ASNR for the myopic result over the clas-
sical result. Artifactual lateral compression of the square
features is not seen in the classical result as it is in the
myopic result, however.

Photometric comparisons with the true phantom object
are shown in Table 1 for each of the highlighted features
in Fig. 5. With the exception of dotlike features, myopic
deconvolution using automatic hyperparameter estimates
can recover intensity values to within ~10%; this is only
slightly improved by \, scaling. However, using the true
PSF or scaling down A\, can dramatically improve the pho-
tometric recovery over the dotlike features by 15%—30%.

Displayed in Fig. 6(B) are the true PSF (A;,,.), the av-
erage PSF used as the initial guess in myopic deconvolu-

tion (h), the myopically recovered PSF using AIDA (ﬁ),
and the myopically recovered PSF using a band-limited

OTF constraint (ﬁband—limited)' Myopic deconvolution using
a simple band-limited constraint results in an expected
delta-function-like solution for the recovered PSF. Myopic
deconvolution using a harmonic frequency constraint
based on sampled PSFs prevents a delta-function-like
solution and leads to the recovery of the Airy ring around
the core of the true PSF that is only faintly visible in the

Table 1. Photometric Accuracy of the Highlighted Object Features in Fig. 5 after Classical and Myopic
Deconvolution®

% Intensity of True Object, o

ObjeCt <dOtS> square;, e, square,; ., lineoblique linehorizontal
Image, i 27.9 71.6 92.9 60.1 59.0
Classical decon () 52.1 87.2 99.6 78.9 79.9
Myopic decon (auto) 68.9 94.8 101.5 98.7 92.9
Myoplc decon ():0/2) 85.3 97.8 101.1 104.7 95.0
Classical decon (., 5,/2) 98.0 93.3 100.6 97.9 97.6

“Category (dots) was computed using the average intensity over a circular area with a radius characterized by half the peak dot intensity and is the average of the three dots
shown in Fig. 5. Values for the square and line features were calculated using the median intensity over an area minimally enclosing the same feature in the true object, o.
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average PSF. Artifactual line elements of the object are
also present in the recovered PSF, however. This leads to
a more laterally extended PSF and gives rise to the slight
compression observed for the myopically reconstructed
object [Figs. 5(D) and 5(E)]. Given the highly variable
bounds of the sampled PSFs [Fig. 6(A)], complete separa-
tion of object and PSF features in myopic deconvolution is
unlikely without further constraints.

Below, we demonstrate the effectiveness of AIDA in
myopically deconvolving real imaging data for two astro-
nomical targets, Io and Titan.

A.To

To is the innermost Galilean satellite of Jupiter with a di-
ameter similar to Earth’s moon (~3600 km) and is known
to be volcanically active. To understand the origin of Io’s
volcanism, its time evolution, and relationship to tidal
heating, its volcanic activity needs to be monitored over a
large time baseline. With the demise of the Galileo space-
craft that was in orbit around the Jovian system until
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2003, the monitoring of Io volcanism now lies in the
hands of ground-based observers.

When Io is closest to earth, its angular size is
~1.2 arcsec, which is very close to the natural angular
resolution (seeing) provided by ground-based telescopes.
Because of its brightness (apparent visual magnitude,
m,~5), Io is ideally suited for observation by adaptive op-
tics (AO) systems. Volcanism on Io has been monitored
regularly in the near infrared (NIR) between 1 and 5 um
by one of us (F. Marchis) using the Keck 10 m telescope
AO system.62_64 The angular resolution provided by AO
varies with the wavelength range of observations from
55 milli-arcsec (mas) in the Kc band (centered at 2.2 um)
to 100 mas in the Ms band (4.7 um), corresponding, re-
spectively, to ~170 and ~305 km on the surface of the sat-
ellite. Such spatial resolution is comparable with that of
the Galileo observations of Io in the same wavelength
range.®

Marchis and co-workers®?%* used MISTRAL to process
the first high-resolution AO images of Io volcanic activity.

micron) observed on January

sed image

‘e

basic—processed image

) observed on March 8, 2003

r
LN

ssed image

Fig. 7. Myopic deconvolution results for AO-corrected images of Io, a volcanically active moon of Jupiter. The PSF of the system was
estimated using images of a star located near the target with the same visible magnitude. PSF variability [characterized by v in Eq. (13)]
depends mainly on the brightness of the target, the quality of the atmospheric turbulence, and the wavelength range of observations. We
estimated that FWHM variability of the PSFs from ten nights of observation to be <6% in the K band.%*
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1,001 0,601

Fig. 8. Reconstructed appearance of Io on January 26, 2003, at
07:38 UT observed from Earth. This image is based on Galileo
solid state imaging and Voyager composite maps at a resolution
of 20km (courtesy of P. Descamps, Institute de Mécanique Cé-
leste et des Calculs d’Ephémérides). Note that albedo features
(e.g., calderas/craters) can also be seen on the deconvolved image
(cf. Fig. 7).

We compared the performance of AIDA (with automatic
hyperparameter estimation) with that of MISTRAL with
a set of Io images acquired in 2003. The deconvolution re-
sults for three different broadband filter observations are
shown in Fig. 7. Each basic-processed filtered image was
a shift-and-added synthesis of five observations (<5 min
each; background subtracted and flat fielded). The im-
provement in image contrast after deconvolution is obvi-
ous. In the Kc band, the surface reflectance or albedo
markings including dark paterae and bright frost areas
are visible on the surface of Io. The general features of Io
are in excellent agreement with those of Galileo/Voyager
maps shown in Fig. 8. AIDA and MISTRAL deconvolution
results are extremely similar, with a correlation coeffi-
cient of 99.4% when calculated over the area of the satel-
lite.

For a single, 512X 512 image, our AIDA implementa-
tion was 15-20 times faster than the original MISTRAL
implementation (e.g., ~25 min versus ~7h on a 1.8 GHz
iMac G5 computer running Mac OS X 10.3). In practice,
multiple MISTRAL deconvolutions must typically be per-
formed to hone in on hyperparameter values that yield
the best results. This is often a time-consuming and labo-
rious process: between 10 and 20 MISTRAL deconvolu-
tion runs are usually necessary to locate an optimal
(6,,\,) pair. Thus, the practical gain in processing time of
AIDA compared with MISTRAL is >100-fold.

The image of Io in the Ms band is radically different
than for the Kc band, being dominated by the localized
thermal emission of the volcanoes. In the Lp band (inter-
mediate wavelength, ~3.8 um), large-scale albedo fea-
tures on the surface are visible as are the thermal emis-
sions of the active centers. After deconvolution, several
additional hot spots were revealed on the hemisphere of
To. Most of them can be found in the basic-processed im-
age upon more careful scrutiny. The Lp band result gen-
erated with AIDA using automatic hyperparameters is
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noticeably different (more diffuse bright spot and some
slight ringing) compared with that of MISTRAL, although
these differences can be reduced by manually adjusting
the hyperparameters (data not shown).

The accurate recovery of image intensities from which
the temperature and emission areas of these hot spots can
be determined (e.g., assuming a blackbody emission law)
is also of interest. Hot-spot flux was measured using ap-
erture photometry on the deconvolved image, assuming
that most of the flux is gathered in an area slightly larger
than the angular resolution on the image.% This is a good
approximation for hot spots with a peak contrast lower
than 20%, since the intensity of the first Airy ring is neg-
ligible compared with the variation of brightness on the
surface. For the extremely bright hot spot (outburst) on
the Ms band image, a prominent Airy ring remains after
deconvolution. This residual artifact may be explained by
the fact that the Keck PSF is hexagonal in shape®’ and
that its orientation changes with the position of the tele-
scope; optimizing the rotation of the sampled PSFs (and
thus the mean PSF to which the PSF estimate is con-
strained) would likely minimize this artifact. Since this
problem would not significantly affect the scientific analy-
sis of the image, we have not pursued this matter further.
The hot spot can be seen on the basic-processed image
with a very good SNR, and therefore its integrated inten-
sity can be easily measured after comparison with the
PSF. Overall, the deconvolution of Io images with AIDA
provides excellent reconstructions, which can be used to
analyze surface changes on Io and to detect the faintest
active centers and quantify their intensities.

B. Titan

Titan, Saturn’s largest moon, was largely a mystery until
very recently. Observations collected by the Voyager
spacecraft in 19818 showed that Titan is obscured by a
dense and opaque atmosphere consisting mainly of nitro-
gen. The surface of this 0.9” angular-sized satellite, how-
ever, can be probed in the NIR through methane windows
using such high-resolution techniques as speckle
imaging® and AO.™ Recent AO observations of its atmo-
sphere revealed the presence of clouds and a complex
structure with seasonal variability. The NASA-ESA
Cassini—-Huygens probe in orbit within the Saturnian sys-
tem and an intensive campaign of observations using AO
systems available on the Keck 10 m telescope (Mauna
Kea, Hawaii) and the ESO-8 m Very Large Telescope
(Cerro Paranal, Chile) are in place to help understand
this complex satellite.

In Fig. 9(A), we show a ground-based observation of Ti-
tan taken on January 15, 2005, one day after the Huygens
probe landed on its surface. Titan was observed with the
Keck AO using the NIRC-2 camera with a pixel scale of
9.94 mas through a narrowband He filter (2.06+0.03 um).
At this wavelength, the atmosphere is nearly transpar-
ent, and most of the structures visible on the image are
larger than 330 km (corresponding to 55 mas). A remark-
able gain in image contrast is obtained after AIDA decon-
volution, as shown in Fig. 9(B). This imaged hemisphere
contains the landing site of the Huygens probe and was
regularly observed by the Cassini spacecraft [Figs. 9(C)
and 9(D)]. The similarity between the Imaging Science
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Fig. 9. Myopic deconvolution results for AO-corrected images of
Titan, the largest moon of Saturn. A: Basic-processed image of Ti-
tan taken on January 15, 2005 (one day after the Cassini—
Huygens probe landing), using the ground-based Keck AO sys-
tem and a narrowband filter centered at 2.06 um to probe surface
albedo features.” B: Keck AO image of Titan after myopic decon-
volution with AIDA. C: Mosaic image of Titan based on 1.3 km
resolution data taken in the infrared with the lmage Science
Subsystem (ISS) instrument aboard the Cassini spacecraft
(http://photojournal jpl.nasa.gov/catalog/PIA06185). D: False-
color visible and infrared mosaic image of Titan taken by the ISS
(http://photojournal jpl.nasa.gov/catalog/PIA07965). Atmospheric
features are shown in red and surface features in green and blue.
Although the orientation of the Keck and ISS observations are
slightly different, similar structures are seen on the deconvolved
image as in the ISS image, validating the effectiveness of AIDA.
Two ISS images were chosen to illustrate the variability of the
satellite appearance due to the presence of haze and clouds. Ar-
rows serve as reference markers to a common feature. Images of
the six sampled PSFs used in the myopic deconvolution process
are shown in the bottom panel along with the reconstructed PSF
in the green frame on the right.

Subsystem images (with a slight rotation of Titan) is
striking. The smallest albedo structures detected after de-
convolution have clear equivalents in the higher-
resolution image’! (see arrow markings). This comparison
validates the efficiency of our algorithm and demon-
strates the absence of significant artifacts on the decon-
volved image. A full scientific analysis of this and numer-
ous other Titan observations and deconvolution results is
presented elsewhere.”

5. APPLICATION TO MULTI-FRAME
DATA SETS

When multiple AO images of a common object are ac-
quired, they are often simply combined into a single shift-
and-added image, which is then deconvolved. This prac-
tice has been demonstrated by others to be suboptimal; a
more effective data reduction strategy would be to decon-

Vol. 24, No. 6/June 2007/J. Opt. Soc. Am. A 1593

volve the set of images in a global fashion, linking com-
mon variables while maintaining the distinctiveness of
each observation. Extending the MISTRAL approach to
simultaneously deconvolve multiple image frames is an-
other feature of AIDA. Below, we present deconvolution
results for two different multi-frame data sets. The first
consists of AO images of Uranus’s atmosphere and is used
to demonstrate AIDA’s multi-PSF deconvolution capabili-
ties, in which there is a common object but a variable
PSF. The second data set consists of time-lapsed fluores-
cence microscopy images of yeast microtubule dynamics
and is used to demonstrate AIDA’s multi-object mode, in
which there is a common PSF but different objects be-
tween frames.

A. Atmosphere of Uranus (Multi-PSF)

Since the Voyager spacecraft encounter of the planet Ura-
nus in 1986, interest in this planet has been revitalized
with the discovery that its atmosphere is considerably
active.” High-angular-resolution imaging, however, is
necessary to detect cloud motions,”® faint rings, and small
satellite systems.“’75 The extended disk (diameter
~3.6 arcsec) of the planet (integrated apparent visual
magnitude, m,~6) is bright enough to be used as a refer-
ence for wavefront sensor analysis on most AO systems.
However, since the position of the centroid on the wave-
front is not well determined in the case of a quad-cell ap-
erture wavefront sensor for such an extended object, the
atmospheric correction is degraded in the final image, and
artifacts may appear in several frames.” We tested AIDA
on observations of Uranus taken on October 3, 2003, with
the Keck AO system and its NIRC-2 camera, using a
broadband filter centered at 1.6 um (H band). Five 30 s
frames recorded in less than 8 min were processed using
standard near-infrared data reduction techniques (flat-
field, sky subtraction, and bad pixel removal). To estimate
the PSF for myopic deconvolution, we imaged Puck, a
bright satellite of Uranus located 2.4” away from the cen-
ter of the planet and whose motion was negligible during
the exposure time. Given the large imaged size of Uranus
and size of the image frames (1024 X 1024 pixels), using
MISTRAL for deconvolution would not have been prac-
tical due to the long processing time needed
(~23 h/deconvolution on a Sun Ultra 10 computer), espe-
cially since we would have needed to run multiple decon-
volutions to determine a good choice of regularization pa-
rameters. Deconvolution using AIDA with automatic
hyperparameter estimation was significantly faster
(45 min for mono-frame deconvolution and 1.5 h for multi-
PSF deconvolution on a 2.8 GHz Intel Xeon Linux ma-
chine) with the possibility of analyzing all AO data frames
simultaneously.

Deconvolution results in significant image sharpening
(Fig. 10), with a gain in contrast of ~2—3 on the cloud fea-
tures. A layered structure of the northern haze and some
faint clouds at ~40° latitude are revealed, and the struc-
ture of the large clouds on the southern hemisphere is
clearer after deconvolution. A ghost outer ring artifact
present in previous observations using the same Keck AO
system75 is visible in several of the individual AO-
corrected image frames [Fig. 10(C)]. This artifact remains
in the mono-frame deconvolution of the shift-and-added
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Fig. 10. Planet Uranus observed with the Keck AO system and
NIRC-2 camera on October 3, 2003. Top: A: Multi-PSF deconvo-
lution of five AO-corrected images of Uranus; B: combined shift-
and-added image of five AO-corrected observations (30 s expo-
sure for each). The gain in contrast after deconvolution is
estimated to be ~2, so that cloud features (arrows) can be more
easily identified. Bottom: Close-up of the ringlets of Uranus. C:
basic-processed AO image. D: Multi-PSF deconvolution using six
image frames. E: Mono-frame deconvolution of a shift-and-added
image. This ring system is extremely faint and close to the disk of
the planet; intensities of the ringlets are comparable to the in-
tensity of the glare of Uranus as shown in the basic processed im-
age C. Deconvolution using AIDA significantly improves the con-
trast even on these faint features. The result is slightly better
using multi-frame versus mono-frame deconvolution. Arrows in-
dicate a ghost artifact present in the mono-frame deconvolution
result, which is reduced in the multi-frame deconvolution result.

o

mono-decon

mono
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combined image but is half as intense in the multi-frame
deconvolution result [cf. Figs. 10(D) and 10(E)]. The glare
of Uranus (e.g., see area near the innermost ringlet) is
also further reduced in the multi-frame deconvolution re-
sult than in the mono-frame deconvolution result. Over-
all, we find that simultaneous deconvolution of multiple-
frame data is better able to restore low SNR features and
minimize artifacts than the deconvolution of a single
shift-and-added representation of the multiple-frame
data.

B. Yeast Microtubule Dynamics (Multi-Object)
Microtubules are hollow cylindrical polymers that radiate
from near the nucleus of a cell and serve as tracks upon
which cellular components are transported. Roughly
25 nm in diameter, these microtubules are formed from
the stochastic polymerization and depolymerization of a-
and B-tubulin proteins. The regulation of microtubule dy-
namics has been a topic of investigation for many years in
cell biology, aided greatly by the direct observation of mi-
crotubules using time-lapsed video fluorescence
microscopy.76

We used AIDA in multi-object deconvolution mode to
process time-series images of microtubule dynamics in
the fission yeast, Schizosaccharomyces pombe. Using the
OMX wide-field fluorescence microscope system devel-
oped recently in our lab at the University of California,
San Francisco (UCSF), a yeast cell whose microtubules
were fluorescently labeled using the green fluorescence
protein fused to a-tubulin was imaged every second. Each
image was formed by physically sweeping the microscope
focus (by linearly moving the sample stage) through the

multi-decon

Fig. 11. Multi-object deconvolution of time-series images of a S. pombe (fission yeast) cell whose microtubules were fluorescently labeled
with a-tubulin green fluorescent protein and imaged with the OMX microscope system (data courtesy of Satoru Uzawa, Sedat Lab.
UCSF). Each time-series slice was generated by axially sweeping the microscope focus over a 4 um depth within 50 ms; an image slice
was acquired every second for about 4 min. A: A single time-series slice of the original image data after basic processing (bad pixel re-
moval and flat fielding), mono-frame deconvolution, and multi-object deconvolution (image pixel size=80nm). B: One-dimensional maxi-
mum intensity projections (generated along the y axis of the slice) plotted as a function of time (kymograph).
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entire z depth of the cell (~4 um in 50 ms) every second.
Using estimates of the PSF based on a set of three images
of a 0.1 um fluorescent bead acquired under similar con-
ditions, these time-series data were myopically decon-
volved assuming a common (time-invariant) PSF for the
whole data set and assuming each image was simply a
snapshot of a distinct object.

In Fig. 11(A), we show the results of standard myopic
deconvolution and multi-object deconvolution with auto-
matic hyperparameter estimates for a single representa-
tive time slice. In Fig. 11(B), the corresponding kymo-
graph plots—1D maximum intensity projections of each
image as a function of time—are shown for these data.
These kymograph plots provide a better perspective on
the time-dependent features of microtubule growth and
shrinkage. The mono-frame deconvolution results are sig-
nificantly denoised with improved microtubule contrast.
The multi-object deconvolution results have even better
contrast enhancement, exhibiting thinner microtubule fi-
bers and a more textured background within the cell cy-
toplasm. It is unclear how much of this texturing may be
artifactual. However, the fact that each image slice was
deconvolved independently with respect to the time axis
and that a number of cell background features are tempo-
rally persistent in the kymograph suggest that some of
these grainy features are genuine.

SNR=0 dB

>

image (i)

decon (6)

SNR=20 dB
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6. APPLICATION TO THREE-DIMENSIONAL
DATA SETS

One main advance of AIDA is the extension of the MIS-
TRAL method to deconvolved 3D data commonly encoun-
tered in biological imaging. Unlike the 2D PSFs encoun-
tered in low-numerical-aperture astronomical imaging,
the PSF's in optical microscopy are more diffuse, with sig-
nificant axial (z-dimensional) blurring on the order of
three times the lateral blur. Deconvolution is expected to
dramatically sharpen image data subject to such out-of-
focus blur. Recently, Chenegros et al.”" demonstrated the
effectiveness of MISTRAL’s edge-preserving regulariza-
tion term in deconvolving synthetic 3D retinal images.
Here, we show myopic deconvolution results for two 3D
data sets, one synthesized from magnetic-resonance im-
aging (MRI) data of a frog and another of real, wide-field
fluorescence microscopy data of chromosomes within cells
undergoing cell division.

A. Three-Dimensional Frog MRI

We constructed synthetic 3D frog images (128x256
X 256 pixels) by convolving a MRI volume data set from
The Whole Frog Project (Lawrence Berkeley National
Laboratory)78 with a PSF derived from microscopic imag-
ing of a subresolution (0.1 um) fluorescent bead; Poisson

object (o)

noise-free (g)

o
} -
e

g

Fig. 12. 2D volume projections for myopically deconvolved 3D frog image stacks with image SNRs of 0 and 20 dB. A: xy projection; B: yz
projection. Each image is shown using a full intensity scale (from minimum value to maximum value). Automatic hyperparameter esti-
mates were used along with an axial resolution gradient factor of k=3 (see Subsection 3.C). Images are scaled from minimum to maxi-
mum values.
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and Gaussian noise was added to the convolved image as
described earlier. The PSF used had a FWHM in the lat-
eral direction of ~3 pixels and an effective resolution loss
in the z direction («x) of ~3 [see Eq. (21)]. Using an en-
semble of similarly acquired experimental PSF's, these
frog images were myopically deconvolved using automatic
hyperparameter estimates (~6 h on a 2.8 GHz Intel Xeon
Linux machine).

Additive 2D volume projections for the raw and decon-
volved 3D image stacks for image SNRs of 0 and 20 dB
are shown in Figs. 12(A) (en face) and 12(B) (side view).
The denoising and object reconstructions for these data
are striking. The quality of the deconvolution results con-
veyed by these 2D projections is comparable to that seen
from a comparison of individual 2D slices. Representative
slices through the 3D volume stack of the original object,
20 dB SNR image, and deconvolution result are shown in
Fig. 13; also shown are intensity line profiles (denoted by
an asterisk) through the eye region of the 2D frog slices.
Deconvolution with AIDA leads to substantial photomet-
ric restoration of the original frog data, with a signal-to-
noise improvement (ASNR) of 5.7 and 5.1dB for image
SNRs of 0 and 20 dB, respectively.

B. Mitotic Chromosomes in Drosophila Embryos

Nearly 50 years since the atomic structure of DNA was
elucidated, the higher-order structural organization of
DNA within chromosomes of cells remains poorly under-
stood. With recent advances in high-resolution micro-
scopic imaging and fluorescent labeling technology, how-
ever, discerning the mesoscopic arrangements of DNA
within living cells is becoming more of a reality. A primary
interest of ours is to better understand the detailed struc-
tural changes of chromosomes as a cell divides in a pro-
cess called mitosis. During mitosis, a cell’s chromosomes
are unraveled, condensed, and separated; defects in chro-
mosome structure during any of these mechanical steps
could have devastating consequences on the fidelity of ge-
netic transmission to daughter cells.™

Drosophila melanogaster (fruit fly) embryos offer a
unique opportunity to study chromosome structural
changes during mitosis. Cells in early embryos (within
2—3 h) undergo multiple rounds of cell division in an or-
dered and highly reproducible manner. Using the OMX
microscope system mentioned earlier (Subsection 5.B), a
3D image stack (32X 512X 512 pixels) was acquired of a
cell-cycle-10 D. melanogaster embryo fixed in 10% formal-
dehyde and mounted in glycerol. Cells in this embryo
were stained with the DNA-specific dye, DAPI, and cap-
tured undergoing anaphase, the stage of mitosis in which
chromosomes separate. This image stack was deconvolved
myopically using a PSF derived from an image of a
170 nm fluorescent bead under similar imaging settings.
Image pixel spacing was 80 nm in xy and 150 nm in z, for
a total image stack thickness of 4.8 um. { was set to 3.2
based on the extent of a measured OTF in the lateral ver-
sus axial directions.

Shown in Fig. 14 are 2D maximum intensity projec-
tions of representative portions of the original 3D image
stack and the result after myopic deconvolution. Although
the original data shown are of especially good quality so
that most chromosome arms can be distinguished in Fig.
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14(A), chromosome boundaries are significantly more de-
marcated in the deconvolution result. The benefits of de-
convolution are even more pronounced in Fig. 14(B) in
which there is greater blurring in the axial versus lateral
directions: finer structures and corrugated banding pat-
terns of the chromosome arms become noticeable; the ar-
rows highlight a few representative areas showing im-
proved contrast in fine image features. Some residual
hour-glass PSF blur remains after deconvolution, how-
ever, and appears to become more prominent with in-
creasing z depth (see, e.g., lower left of deconvolution re-
sult, Fig. 14(B)). This blur may be attributed to greater
index-of-refraction aberrations between the microscope
objective lens and the sample as one focuses deeper into
the embryo. The true PSF in this case is thus likely to be
depth dependent, although space-invariant PSFs are as-
sumed in the current AIDA deconvolution framework.

To achieve the nonblurry, visually balanced deconvolu-
tion result of Fig. 14, we found it necessary to scale the

automatic hyperparameter estimate, )A\O, down by a factor
of 10. Inaccurate hyperparameter estimation is likely due
to at least one of four possible causes. First, since only a
single PSF estimate was available for these data [in
which case the OTF constraint is based simply on the
photonic-noise variance (see Subsection 3.A)], the calcu-
lated OTF statistics may not be sufficient to guide the
myopic deconvolution toward a more correct OTF. A lower

)A\O likely compensates for imprecise OTF statistics. Sec-
ond, as alluded to above, depth-dependent variations of
the true PSF are not accounted for in our imaging model
and may lead to compromised object reconstructions.
Third, there may be noise sources (e.g., out-of-focus, scat-
tered background light) that are not accounted for by the
assumed noise model; the effectiveness of the hyperpa-
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Fig. 13. Representative 2D slice and line profile through the
original 3D frog object (0), 20 dB SNR image (i), and deconvolu-
tion result (6).
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Fig. 14. Chromosomes of mitotically dividing cells (cell cycle 10, anaphase) within a D. melanogaster (fruit fly) embryo. Chromosomes
were stained with the fluorescent dye, DAPI, and embryos were fixed in 10% formaldehyde fixation buffer A, mounted in glycerol, and
imaged using the OMX microscope system with a 100X oil-immersion objective (data courtesy of Yuri Strukov, Sedat Lab, UCSF). A:
Maximum intensity xy projections of two subregions of the acquired 3D image stack after basic processing (top) and of the myopic de-

convolution result using /=3.2 and \,=1/10 (bottom) (see text). Insets (see arrows) highlight corresponding areas of improved contrast
after AIDA deconvolution. B: xz projections for the data in A. Areas of improved contrast are highlighted by arrows. More dramatic
restoration is observed in the axial (z) direction, although some residual blurring remains, noticeably with increasing z. Image pixel size
was 80 nm in the lateral (xy) direction and 150 nm in the axial direction. Bar=4 um.

rameter estimation scheme is predicated upon good esti-
mates for the Gaussian and Poisson noise statistics (as
discussed in Subsection 3.D). Fourth, out-of-focus contri-
butions to the image stack from areas of the embryo oui-
side the image stack are not accounted for in the current
imaging framework. The effects of these factors on decon-
volution outcome and strategies to compensate for them
are currently being explored by our group.

7. SUMMARY AND FUTURE DIRECTIONS

We have reimplemented and extended the MISTRAL
approach'? to myopically deconvolve, as far as we know
for the first time, multiple-image-frame data and 3D im-
age stacks. Unlike MISTRAL, which is implemented us-
ing the commercial Interactive Data Language (Research
Systems, Inc., Boulder, Colorado) and has proprietary
source code, our adaptive image deconvolution algorithm,
AIDA, was implemented using freely available Numerical
Python and is intended for open-source development.
AIDA runs at least 15 times faster than the original MIS-
TRAL implementation. Importantly, AIDA incorporates a
simple yet robust scheme to estimate regularization hy-
perparameters, which greatly simplifies the tedious and
delicate though necessary task of balancing maximum-

likelihood estimation with object regularization and noise
suppression. Object reconstructions can be generated us-
ing AIDA that are comparable with those of MISTRAL,
with high photometric precision and good edge preserva-
tion and without the need to sample (typically 10-20) dif-
ferent hyperparameter settings in order optimize the de-
gree of regularization. This results in a practical
efficiency gain of AIDA over MISTRAL of greater than
100-fold.

Multiple image observations are commonly acquired in
adaptive optics imaging, although they are often com-
bined into a single averaged image before deconvolution.
Deconvolving these images simultaneously, however, is a
more effective data reduction strate,gy.ll’?’k33 The multi-
frame deconvolution results for the Uranus AO observa-
tions show that leveraging invariable aspects of the data
while retaining the unique variations between distinct ob-
servations leads to object reconstructions with crisper de-
tails than the corresponding mono-frame deconvolution
result.

AIDA’s multi-frame deconvolution capabilities are cur-
rently limited to data with a single object and multiple
variable PSFs (M,=1; M, >1) or a single PSF and mul-
tiple variable objects (M, =1; M,>1). It would be straight-
forward to extend the algorithm to handle data sets in
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which multiple objects are imaged using different though
known transformations of a fundamental PSF describing
the optical system. This is relevant, for example, to multi-
wavelength imaging in as‘cronomy34 and microscopy in
which the PSF characteristics as a function of wavelength
are well established and can be predicted. Such an ap-
proach could also be applied to process tomographic imag-
ing data in which the dependence of the transfer function
is known and parametrizable as a function of tilt angle.
Using such a multi-object—multi-linked-PSF approach,
our group is currently exploring the application of AIDA
to deconvolve electron microscopy (EM) images, with the
goal of improving 3D object reconstructions from EM to-
mographic data.

AIDA is equally effective in deconvolving 3D image
data and 2D data, and deconvolution times scale linearly
with the size of the image data. In the current AIDA
framework, each image pixel element is treated as a vari-
able to be optimized, leading to substantial computational
demands as image size increases. Work in our group is in
progress to recast the optimization of the PSF in terms of
the more computationally compact pupil function that
characterizes the optical wavefront at the exit pupil of an
imaging system arising from a point source.8%®! In addi-
tion to greater computational efficiency for larger image
data sets, myopic deconvolution using the pupil function
could provide explicit insight into the inherent or dy-
namic aberration modes of an optical system (e.g., by
Zernike mode decomposition). The ease with which the
pupil function can be modified to account for aberrations
also makes it particularly amenable to use in cases where
the PSF is space variant®®®! (e.g., with depth-dependent
index-of-refraction  variations in  microscopy or
anisoplanatic imaging in astronomy). Moreover, use of the
pupil function could help bridge the synthesis of
wavefront-sensing data from AO and imaging data in the
deconvolution process.52

At least four issues merit further development and ex-
ploration. First, the reasons for the success of our auto-
matic hyperparameter estimation scheme. While this
semiempirical scheme is effective in deconvolving a broad
range of image data, the theoretical foundations for its ro-
bustness deserve future study. The assumption of quasi-
independent pixel/voxel prior distributions and the as-
sumption that the balance of maximum-likelihood
estimation and object regularization is best achieved by
normalizing these prior distributions with respect to one
another should be explored in relation to the partition
functions of Eq. (6) and other more rigorous marginal
likelihood approaches. Second, the development of a
multi-object deconvolution mode more specifically tailored
for time-series data. In deconvolving the microtubule dy-
namics data in subsection 5.B, the temporal indepen-
dence of each object in the time series was assumed.
While this was helpful in highlighting common, persis-
tent features between time frames, incorporating a cost
function term or procedure within the deconvolution algo-
rithm to maximize the temporal correlation between ad-
jacent time slices may help reinforce object features that
are self-similar and suppress temporally uncorrelated
noise artifacts. Third, as image data sets become larger
and/or deviations from the assumed noise model become
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more pronounced, the time-to-optimization convergence
may become seriously compromised. Convergence might
be improved by toggling between a weighted least-
squares (L2-norm) form for the data fidelity term [Eq. (8)]
and a robust L1-norm form that is computationally sim-
pler and less sensitive to noise model mismatch and data
outliers.5#* Deconvolution efficiency might also be im-
proved by a reparametrization of the object, for example,
using wavelets,!” and by incorporating aspects of multi-
resolution/hierarchical scaling into the deconvolution
algorithm.”%587 Finally, it would be interesting to see
how the myopic capabilities and edge-preserving noise
suppression advantages of AIDA deconvolution could im-
prove the processing of data from such superresolution
imaging modalities as multi-frame mosaicing®*® and
structured illumination microscopy.89’90
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