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We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and
three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation
and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object recon-
structions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)].
Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has signifi-
cantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to au-
tomatically balance maximum-likelihood estimation and object regularization, which significantly decreases
the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using syn-
thetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm
to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field
microscopy. © 2007 Optical Society of America

OCIS codes: 100.1830, 100.3020, 100.3190, 010.1080, 180.0180, 180.6900.
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. INTRODUCTION
mages acquired using any optical system are fundamen-
ally limited in resolution by diffraction and corrupted by
easurement noise. Aberrations intrinsic to the optical

ystem and imaging medium result in further degrada-
ion and distortions of the observed images. In ground-
ased astronomical imaging, atmospheric turbulence is
he primary source of aberrations. In microscopic and bio-
ogical imaging, significant aberrations arise as a result of
ndex-of-refraction inhomogeneities within the sample
nder study.
Aberration artifacts can be largely corrected using

daptive optics (AO) methods.1 Limited by the spatial
nd/or temporal response of AO hardware, however, such
orrections remain imperfect. AO-corrected images are of-
1084-7529/07/061580-21/$15.00 © 2
en contaminated by residual blurring that can signifi-
antly reduce the contrast of fine image details. Signifi-
ant denoising and improved image contrast can be
btained using post-acquisition deconvolution tech-
iques,2 implying that both hardware and software cor-
ection strategies are needed for optimal image recovery.

Deconvolution is an explicit attempt to model and com-
utationally compensate for measurement nonidealities.
lassic approaches presume that the imaging point-
pread function (PSF) of the optical system is exactly
nown. In practice, however, the PSF is estimated either
heoretically3,4 or by imaging a subresolution pointlike
bject (e.g., guide star or fluorescent bead).5,6 Such esti-
ates may deviate significantly from the true PSF, yet no
argin is given in classical methods for the PSF to adjust
007 Optical Society of America
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o a more appropriate estimate. Using a fixed, imperfect
SF thus inherently limits one’s ability to generate the
ost accurate and highest-resolution object reconstruc-

ions.
Myopic or blind deconvolution approaches allow an im-

recise or unknown PSF estimate to adapt to a more cor-
ect form and thereby offer the possibility of improved ob-
ect reconstructions over classical methods. The success of
hese myopic–blind methods, however, is dependent upon
priori constraints that compensate for the lack of infor-
ation associated with having the PSF be variable.7–11

In this paper, we describe an adaptive image deconvo-
ution algorithm (AIDA) for myopic deconvolution of two-
imensional (2D) and three-dimensional (3D) image data
ithin a maximum a posteriori framework. AIDA is a de
ovo implementation and extension of the MISTRAL

Myopic Iterative STep-preserving Restoration ALgo-
ithm) method, originally developed by Mugnier and
o-workers12 to effectively deconvolve a broad range of as-
ronomical targets with superior photometric restoration
nd sharp-edge feature preservation. We have signifi-
antly improved AIDA’s run-time performance over the
riginal MISTRAL implementation and have developed a
imple yet effective scheme to balance maximum-
ikelihood estimation with object regularization in the de-
onvolution process. Moreover, AIDA has capabilities to
rocess multiple image frames simultaneously, thereby
everaging the information available through multiple
bservations.2,11 In Section 2, we present the deconvolu-
ion approach. In Section 3, we describe how AIDA was
mplemented and describe our automatic regularization
cheme. In Section 4, we demonstrate AIDA’s effective-
ess on both synthetic and experimental single-frame
ata. In Sections 5–7, we present the application of AIDA
o multiple-image-frame data and 3D images. We con-
lude with a survey of possible algorithmic improvements
nd applications, offering AIDA as an open-source alter-
ative to MISTRAL for further development.

. ADAPTIVE DECONVOLUTION APPROACH
. Imaging Model
onsider an image, i�r�, of an object, o�r�, observed

hrough a telescope or microscope system and measured
sing a CCD detector array. This image may be viewed as
probabilistic mapping of the object’s brightness distribu-

ion to an intensity count distribution sampled over the
iscrete pixel/voxel position, r :o�r�� i�r�. Assuming that
i) image formation is linear and space invariant
isoplanatic approximation), (ii) the response of each CCD
ixel element is equivalent and independent of all others,
nd (iii) signal-independent Gaussian and signal-
ependent Poisson noise sources are present,13 the image
ormed can be described by the following equation:

�1�

here h�r� is the PSF, g�r� denotes the noise-free image,
˘ G�r� is a Gaussian random variable characterized by
ariance �2 , and n̆ �r� represents a stochastic Poisson
G P
rocess with variance �P
2 �g�r�. The operator, � , denotes

convolution, and � denotes a pixel-by-pixel operation.
hile the response of CCD pixel elements is rarely uni-

orm in practice, we will assume that any nonuniformity
an be accounted for through image flat fielding with neg-
igible effect on the validity of Eq. (1). Moreover, we as-
ume that if any constant image background is present, it
an be subtracted from i�r� so that n̆G�r� is zero centered.

When both Gaussian and Poisson noise sources are
resent and images are not photon-limited, a nonstation-
ry but additive weighted-Gaussian noise model with
ariance

w�r� � �n̆�r�
2 �r� = �G

2 + �P
2�r� �2�

s a very good approximation.12,14 With this noise model,
he operator � in Eq. (1) may be replaced by simple addi-
ion, and Eq. (1) may also be expressed as

I�k� = O�k�H�k� + N̆�k�, �3�

here capitalization denotes the Fourier transform of the
ariable, H�k� is the optical transfer function (OTF), and
is the conjugate spatial frequency. For brevity, the de-

endence on r and k will often be implicit hereafter.

. Bayesian Deconvolution Framework
he goal of deconvolution is to invert Eq. (1). Classical de-
onvolution approaches aim to find the best estimate, ô, of
he true object given a single image frame, i, and an ex-
ctly known PSF convolution kernel, h. Such approaches
re ill-posed (lacking a unique solution, or having a solu-
ion that is discontinuous with respect to the data) and ill-
onditioned (numerically sensitive to small errors and
hus unstable) for two reasons: (1) h is intrinsically band-
imited by the resolution limit of the optical system, and
2) noise is present at frequencies beyond the band
imit.8,15 This situation is further complicated in the case
f myopic or blind deconvolution where the characteristics
f the PSF kernel are poorly known, if at all. Because of
ll-posedness, the quality of the deconvolution depends
ritically on the quantity and quality of a priori informa-
ion that is incorporated into the inversion process.8,16

his a priori information can be divided into three classes
elated to n̆, o, and h.

Owing to the presence of noise, deconvolution may be
iewed as a problem of stochastic inversion. It is helpful
o state the goal of deconvolution in Bayesian terms,
amely, to maximize the a posteriori probability of observ-

ng the object, o, and PSF, h, given an image, i, and a set
f model assumptions, a,

p�o,h�i,a� =
p�i�o,h,a�p�o�a�p�h�a�

p�i�a�
. �4�

�i �o ,h ,a� is the posterior probability density of observing
n image, i, as expressed by the forward-imaging equa-
ion, Eq. (1). This term is the focus of maximum-
ikelihood methods, which aim to optimize the fidelity of
he observed data to a set of parameters and subject to a
articular noise model. p�o �a� , p�h �a�, and p�i �a� are the
priori probability distributions for the object, PSF, and

mage, respectively. These a priori distributions must be
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nferred based on the assumptions, a. In classical decon-
olution methods for which the PSF is known, for ex-
mple, p�h �a� is assumed to be a constant. In maximum-
ntropy deconvolution methods, p�o �a� is set implicitly by
he definition of the entropy measure used.17 When the
ositivity of the variables o ,h, and i can be assumed (e.g.,
nder incoherent imaging conditions), the a priori prob-
bilities for negative values can be set to zero.
Each probability term in Eq. (4) may be interpreted as
Gibbs distribution with an energy cost function, J�x�,

nd partition function, Z�x�=�x exp�−J�x��dx,18,19

p�x� = exp�− J�x��/Z�x�, �5�

o that

p�o,h�i,a� = exp�− J�o,h�i,a��/Z

= �Zi/ZnZoZhZ�exp�− Jn�i�o,h,a� − Jo�o�a�

− Jh�h�a� + Ji�i�a��, �6�

here we have used the subscripts n to denote noise-
odel-related data fidelity terms, o to denote the terms

rising from the a priori object distribution, h to denote
he terms arising from the a priori assumptions for the
SF, and i to denote the terms arising from the a priori
istribution of images. The mode or best estimate for both
and h can be found by maximizing Eq. (6) with respect

o these variables or, equivalently, by minimizing the cor-
esponding negative log-likelihood, J�o ,h � i ,a�,

�ô,ĥ�Z = arg min
�ô, ĥ�Z

	J�o,h�i,a�


= arg min
�ô, ĥ�Z

	Jn�i�o,h,a� + Jo�o�a� + Jh�h�a�
. �7�

ince Ji�i �a� is formally independent of variables o and h
iven the set of assumptions a, we have dropped this term
n Eq. (7). We have also dropped the constant term involv-
ng the ratio of partition functions, which embodies infor-

ation on the relative normalization of the component
robability distributions [cf. Eq. (6)]; we use the subscript
to serve as a reminder of this.

. Myopic Deconvolution with Edge Preservation
ur goal is to minimize Eq. (7) subject to a specific set of
odel assumptions for Jn�i �o ,h ,a�, Jo�o �a�, and Jh�h �a�.
e follow the recommendations of Mugnier et al.12 in as-

igning functional forms to each of these component
erms as detailed below.

. Data Fidelity Term: Jn�i �o ,h ,a�
ssuming the mixed-Gaussian noise model of Eq. (2), the
delity of the reconstructed object ô and PSF ĥ with re-
pect to the observed image i can be described by the fol-
owing weighted maximum-likelihood term:

Jn�i�o,h,a� =
1

2�
r

�i�r� − ô�r� � ĥ�r��2

w�r�
. �8�

econvolution approaches that are based solely on this
erm often lead to noise amplification and severe ringing
rtifacts. The Landweber method and the Richardson–
ucy or expectation-maximization algorithm are ex-
mples of such approaches, which assume a stationary-
aussian and Poisson noise model for w�r�,

espectively.8,17 To minimize noise amplification artifacts
nd find a unique and stable solution in practice, Eq. (8)
ust be regularized. In the aforementioned methods,

egularization is accomplished empirically by limiting the
umber of deconvolution iterations.

. Edge-Preserving Object Term: Jo�o �a�
quation (8) may also be regularized through a quadratic
enalty term based on an object’s spatial gradient.15,16

uadratic regularization, however, often yields results
hat are oversmoothed and have compromised image con-
rast when applied uniformly to all object features. Using

roughness penalty that is instead subquadratic for re-
ions of high contrast has been very successful in preserv-
ng edges and other sharp object features.15,20–22 The un-
erlying assumption here is that large gradient
iscontinuities in the image arise from genuine object fea-
ures and should be penalized comparatively less than
mall gradients due to noisy background features. We use
he isotropic edge-preserving prior proposed by Mugnier
t al.,12 which is based on the work of Brette and Idier23:

Jo�o�a� = �o�
r

����ô,�r��, �9�

���� = � − ln�1 + ��, �10�

��ô,�r� = � 
�ô�r�


�r
� , �11�

here 
�ô�r� 
 = ���xô�r��2+ ��yô�r��2+ ��zô�r��2�1/2 is the
orm of the spatial gradient of the object, �r and �o are
uxiliary parameters or hyperparameters of the object
rior distribution, � is a reduced gradient modulus, and
��� is called the clique potential. ���� is a function that

haracterizes the local object texture at a position r based
n a subset or clique of neighboring pixels. This clique is
efined in practice through the calculation of the gradient
orm in Eq. (11). For large values of � , ������, whereas

or small values of � , ����=�− ��−�2 /2+ ¯ ���2 /2, re-
ulting in so-called L1–L2 (linear–quadratic) behavior.
umerous L1–L2 regularization functionals have been

uggested in the literature (e.g, see Teboul et al.22). The
dvantage of Eq. (10) over other forms is that it is convex
nd its derivative with respect to ô does not involve any
ranscendental or exponential functions, making cost
unction optimization easier and less expensive (see Sub-
ection 3.C).

The scaling parameter �o plays an important role in
alancing maximum-likelihood fidelity to the data, with
he preservation of high-contrast features in the object es-
imate. The hyperparameter, �r, sets the width and shape
f the Gibbs distribution in Eq. (5). It governs the point at
hich regularization transitions from being quadratic to
eing linear. In Mugnier et al.’s treatment,12 the same
calar pair of values ��o ,�� is applied to each pixel ele-
ent of the object. We have found that using an inhomo-

eneous hyperparameter model as advocated by
thers,24–27 in which � is pixel/voxel dependent (as indi-
r
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ated by the subscript) and adapted to the local object tex-
ure, results in better deconvolution results.

. Harmonic OTF Constraint: Jh�h �a�
o myopically reconstruct the PSF, the following Fourier
omain constraint is used:

Jh�h�a� =
�H

2 �
k

�Ĥ�k� − H̄�k��2

v�k�
, �12�

here �H controls the degree of the OTF regularization
onstraint relative to the data fidelity term [Eq. (8)], Ĥ�k�
s the true estimate of the OTF, H�k� is a measured OTF,
nd the overbar denotes an average over l measured OTF
amples. v�k� is the OTF sampling variance or power
pectral density defined as

v�k� = ��Hl�k� − H̄�k��2�l
= ��Hl�k��2�l

− �H̄�k��2. �13�

�k� serves as a spring constant to harmonically constrain
ach OTF k component to a mean value, consistent with a
et of measured OTFs. Equation (12) intrinsically handles
and-limitedness of the OTF; frequencies beyond the op-
ical system’s resolution are essentially ignored, since
hey are not represented in the measured samples. Conan
nd co-workers28,29 have shown that this harmonic OTF
onstraint performs noticeably better toward recovering
he true OTF than a simple band-limited constraint typi-
ally used in blind deconvolution methods.7,30 An har-
onic constraint for each spatial frequency, �k�, which is

unctionally equivalent to using a radially averaged v�k�,
ay be used, although we have found that using the less

tringent constraint, Eq. (12), is sometimes more robust.

. Extension to Multiple-Frame Data
he focus thus far has been on a single image frame. One
f our goals in developing AIDA was to combine the dem-
nstrated strengths of MISTRAL with the multiple-frame
ynthesis capabilities available in a method such as
DAC, the Iterative Deconvolution Algorithm in C.2,30,31

hristou et al.31 have argued that the use of multiple ob-
ervations can serve as an additional deconvolution con-
traint: the ratio of unknown variables to measured quan-
ities being reduced from 2:1 for a single image frame to
M+1� :M for M image frame observations. The simulta-
eous analysis of multiple observations implicitly ac-
ounts for correlations that may exist among variables as
ell as between variables and the data.32 Consequently,
ultiple-frame deconvolution should result in systemati-

ally lower error bounds with more reliable results than
hen individual image frames are deconvolved separately
r when multiple frames are merged into an averaged
shift-and-added” image (i.e., an image generated by av-
raging the image frames after appropriate pixel shifts
re made to maximize image correlation) and then
econvolved.2,11,33–36

The extension to multi-frame deconvolution is straight-
orward. For multiple-image observations, Eq. (1) may be
xpressed generally in vector form:
�14�

here �̈ specifies a convolution performed over appropri-
te oj :hj pairs and we have assumed the noise model of
q. (2). In general, for Mi measured images, there may be
o unique objects and Mh unique PSFs: Mo�Mi�Mh. In

ddition to mono-frame data sets where Mi=Mo=Mh=1,
e consider two multi-frame data-set types in this work:

i) multi-PSF data sets where Mi=Mh and Mo=1 and (ii)
ulti-object data sets where Mi=Mo and Mh=1. Multi-
SF deconvolution may be used to process AO images for
hich there is a common target object but a variable PSF
er image observation. Multi-object deconvolution may be
sed to process time-lapsed microscopy images for which
single common PSF does not change significantly be-

ween frames.
The cost function to be minimized for multi-PSF decon-

olution is given by

JM_PSF�o,h�i,a� =�1

2�
�

Mh ��
r

�i� − ô � ĥ��2

w�

+ �h��
k

�Ĥ� − H̄�2

v
�� + �o�

r
����ô,�r��

�15�

nd for multi-object deconvolution by

JM_object�o,h�i,a� =��
	

Mo ��
r
� �i	 − ô	 � ĥ�2

2w	

+ �o	
����ô	,�r,	����� +

�h

2 �
k

�Ĥ − Ĥ�2

v
,

�16�

here 	 and � are used to index multiple objects and
SFs, respectively.

. IMPLEMENTATION STRATEGY
. Algorithmic Overview
e implemented AIDA using Numerical
ython–Numarray,37 with calls to a specialized C++ con-

ugate gradient (CG) optimizer (see Subsection 3.B),
hich were handled by code generated using the Simpli-
ed Wrapper and Interface Generator38,39 (SWIG). Fast
ourier transforms were computed using the FFTW (ver-
ion 2.1.5) subroutine library40 (see also http://
ww.fftw.org) in lieu of the standard Numarray FFTPACK

ibrary, resulting in about a factor of 2 improvement in
he overall speed of the algorithm. A schematic of the al-
orithm is shown in Fig. 1.
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AIDA begins with a preprocessing stage to estimate
ata fidelity weights, w (see below, Subsection 3.C), and
o calculate the mean OTF, H̄, and OTF variance, v. It is
ssumed that all the images supplied have been properly
at fielded and optionally background subtracted. In
ases where the image does not have negative pixels fol-
owing background subtraction (as is the case for an im-
ge without true dark areas), the user must supply either
value for �G or a dark image from which it can be esti-
ated.
The present version of AIDA expects images of refer-

nce PSFs (e.g., of a guide star or subdiffraction-sized
ead), which are normalized to 1 and used to compute H̄
nd v. If only one PSF image is supplied, v is calculated
ased on the noise statistics of the image as for w. AIDA is
quipped with an optional clean-up module to remove
ot–dark pixels from these PSF images and remove noise
ccording to some user-defined threshold. An option to
se a radially averaged OTF variance is provided to en-
ble a more stringent harmonic constraint of spatial fre-
uencies (see Subsection 2.C.3).
The default mode for AIDA uses automatic hyperpa-

ameter settings as described below in Subsection 3.D.

he option to directly specify hyperparameter values or a c
cale factor by which to multiply the automatic estimates
s available for fine-tuning purposes. For mono-frame de-
onvolutions, AIDA is also capable of performing unsuper-
ised deconvolutions over a grid of �o and �r hyperparam-
ter values centered about automatic estimates or user-
efined centers.
Although it is possible to simultaneously estimate both

ets of objects, ô, and PSFs, ĥ, by stacking them into a
ingle variable to be optimized [see Eq. (7)], doing so could
esult in slower convergence, since significant differences
n magnitude between ô and ĥ can result in a skewed op-
imization landscape and ill-conditioning.41 Although
ariable renormalization could solve this issue, we have
hosen instead to alternate between the minimization of ô
nd ĥ in the current version of AIDA, as advocated by
ugnier et al.12

For nonquadratic cost functions, solution convergence
an often be improved by periodically restarting the CG
inimization after a defined number of steps so as to in-

erlace steepest-descent steps with CG steps. We have
ound this partial conjugate gradient (PCG) approach41 to
e more effective than a simple CG approach in minimiz-
ng the quasi-quadratic cost functions Eqs. (15) and (16),

12
onsistent with the findings of Mugnier et al.
ig. 1. AIDA optimization protocol. A: Setup and variable initialization stage. Equation numbers for variables are shown in curly brack-
ts. Mo and Mh are the number of objects and PSFs to be estimated, respectively. B: Deconvolution scheme. The subscript j indexes the
ptimization round, which consists of two partial conjugate gradient (PCG) estimation loops (each indicated by a dashed box): one for the
bject(s), ô, followed by one for the PSF(s), ĥ. The deconvolution is stopped after a max_optimization_count number of sequential PCG
stimation loops have converged (see below). C: Schematic of the PCG estimation loop used to estimate the object(s) or PSF(s) [indicated
enerically by the variable �x̂j�] for the jth optimization round. 
p is an Mo- or Mh-length array of root-mean-square deviations between
equential PCG iterations used to monitor convergence progress. Minimization of each x̂j in x̂j is continued until 
p falls below some
CG_ tolerance for a total of convergence_count times or until a rising_rmsd_count number of uphill moves is registered (default=3 for
oth). Each PCG iteration entails a steepest-descent minimization step followed by up to �−1 conjugate gradient (CG) steps for the set
f unconverged object or PSF estimates. When the fraction of object(s) or PSF(s) that have converged is �
, the PCG estimation is
topped, and convergence for that PCG estimation loop is noted.
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Starting with each PSF in ĥ set to the mean of the
ampled PSFs �F−1�H̄��, each object in ô is optimized via a
CG approach. CG optimization is capped by a set num-
er of iterations, � (typically 25), constituting a CG block
nd repeated for �o PCG iterations. The resulting esti-
ate for ô is then fixed, and each PSF in ĥ is optimized

ia �h PCG iterations. The multi-frame estimates ô and ĥ
re alternatively optimized, with each pair of estimations
onstituting one AIDA optimization round. The number of
CG iterations per optimization round for ô and ĥ is typi-
ally increased progressively, with the possibility of sepa-
ate PCG iteration plans for ô and ĥ. By default, the
umber of PCG iterations executed per optimization
ound is given by PCG�j�=2�j−1�+1, where j is the opti-
ization round, from 1 to �, the maximum default num-

er of optimization rounds (typically 8). Progressively in-
reasing the number of PCG iterations in this manner
nsures that the optimization of the current variable (e.g.,

ˆ ) does not get fixed too quickly relative to the other vari-
ble (e.g., ĥ), which may yet be suboptimal. Multi-frame
ptimization of ô and ĥ is continued until the fraction of
ndividual ôj and ĥj frame estimates that have converged
s greater than some tolerance, 
 (typically �0.9), or until

specified maximum number of optimization rounds is
eached. The convergence of each ôj or ĥj frame optimiza-
ion is achieved when the root-mean-square deviation be-
ween two consecutive PCG iteration estimates falls be-
ow a specified tolerance for at least three times within
ne optimization round. We have found these default set-
ings sufficient for processing most data sets; stricter
onvergence–stopping criteria typically do not yield sig-
ificantly improved results.

. Constrained Conjugate Gradient Minimization
IDA’s quasi-quadratic cost function was minimized us-

ng a constrained CG algorithm developed by Goodman
nd co-workers42 and is freely available as part of the
DEN Holographic Method package.43,44 This algorithm

ncorporates three significant advances over the conven-
ional CG method.45 First, to ensure that solutions are
ositive (or within a user-specified bound), a projected
radient or active sets approach is used.41 Johnston et
l.46 have shown that such an approach is superior to
aintaining solution positivity via reparametrization,

ince reparametrization often leads to the creation of spu-
ious minima that can complicate the optimization pro-
ess. Second, to prevent zig-zagging behavior that can
rise when using an active sets approach or minimizing
onquadratic functions, an adaptive bending line search

s used to set the most effective conjugate direction step
ize (typically called 	). Third, to better preserve conju-
acy between successive directions, the CG deflection pa-
ameter (typically called �) is computed using the
estenes–Stiefel formula instead of the standard
letcher–Reeves or Polak–Ribiere formula.41

. Cost Function and Derivative Calculations
o facilitate modification and future developments of
IDA, the calculation of the cost function was written in
n extensible manner in which cost function terms may
e turned on or off. For computational efficiency, only
erms that are dependent upon the variable being esti-
ated are computed (e.g., for ôj, data fidelity and object

egularization terms, but not the OTF constraint, are
omputed).

The data fidelity weights for each image frame, w�r�
see Eq. (8)], can be computed as a sum of Gaussian and
oissonian contributions according to Eq. (2) as proposed
y Mugnier et al.12:

�17�

he first term accounts for Gaussian detection–electronic
eadout noise, �G

2 , which can be estimated using the aver-
ge over all negative pixels in the image. For images of
xtended objects that do not have any negative-pixel ar-
as (common in microscopy), a separate dark image is re-
uired from which �G

2 can be computed directly. The sec-
nd term in Eq. (17) accounts for Poisson photonic noise,

P
2; this term is derived from the fact that the variance
quals the mean and the mode for a Poisson distribution.
lthough this term should technically be determined us-

ng a noise-free image estimate, �P
2 =max�ĝ�r� ,0�, we did

ot observe a significant improvement in deconvolution
uality to merit using this more accurate though algorith-
ically complicated approach.
The estimates for the variances in Eq. (17) implicitly

ssume that i has been properly background subtracted
o as to lead to a properly centered and sampled Gaussian
istribution for readout noise. Only noise arising from the
mage formation is accounted for here. “Scientific noise”
e.g., cellular autofluorescence in microscopy imaging),
hich may be irrelevant to image features of scientific in-

erest, are not accounted for here explicitly but treated as
n optically genuine component of the object under obser-
ation.

The clique potential [see Eq. (10)] used for edge-
reserving object regularization requires that effective
patial gradients of the object estimate be computed. This
an be done efficiently by convolving the object estimate
ith a gradient mask:

�rô�r� = ô�r� � �Gr, �18�

here Gr, is a 3�3 matrix operator corresponding to the
radient of interest in the direction r and � is a scaling
ormalization factor. Many different gradient masks that
ave been developed for image segmentation may be
sed.17,47 We prefer masks based on the work of Frei and
hen,48 since it is equally effective on horizontal, vertical,
nd diagonal edges, and we have found these operators to
e more effective in recovering subtle object features than
raditional nearest-neighbor finite-difference approxima-
ions (see, e.g., Press et al., Section 5.745). In two dimen-
ions this is given by
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Gx = �
1 0 − 1

�2 0 − �2

1 0 − 1
� ; Gy = �

− 1 − �2 − 1

0 0 0

1 �2 1
� ,

�19�

nd in three dimensions it is given by

Gx = ��0�,�
1 0 − 1

�2 0 − �2

1 0 − 1
�,�0��;

Gy = ��0�,�
− 1 − �2 − 1

0 0 0

1 �2 1
�,�0��;

Gz = � · ��
0 − 1 0

0 − �2 0

0 − 1 0
�,�0�,�

0 1 0

0 �2 0

0 1 0
�� ,

�20�

here �= �2+�2�−1 and � is a z-resolution compensation
actor. In 3D microscopic imaging, the OTF support in the
xial direction is significantly smaller than in the radial
irection. This leads to a greater loss of information and
hus increased blurring in the z direction relative to the x
r y direction; � is used compensate for a more diffuse and
ncertain gradient observed in the z direction of the im-
ge stack so that axial and lateral gradient information
re on equal footing. Given the lateral and axial resolu-
ions of a microscope, rxy and rz , � can be estimated as
�rxy /rz. If we define optical resolution as the distance
etween the central maximum and the first minimum of
he lateral or axial component of a PSF Airy disk, the lat-
ral and axial resolutions of a microscope are given by
xy=0.6�em /NA and rz=2�emn /NA2, where �em is the
avelength of light, n is the index of refraction of the

ample, and NA is the numerical aperture of the micro-
cope objective lens.49 Thus,

� � 3 . 33n/NA, �21�

nd, using values typical in microscopic imaging (n
1.33, NA�1.4), ��3.
Minimizing the AIDA cost function [Eq. (15) or (16)]

ith the CG method requires analytical derivatives with
espect to both object and PSF estimates. These can be
etermined through functional differentiation50 and are
iven by

�J

�o	

=� �
�

NPSFs

ĥ� � � ô	 � ĥ� − i�

w�
�� +

�o	

�r
2 � �r

2ô	

1 + ��ô	,�r�� ,

�22�
�J

�h�

=� �
	

Nobjects

ô	 � � ô	 � ĥ� − ia

wa
��

+ �h�

�Nd + 1�

2
F−1��Ĥ� − H̄�

v
� , �23�

here � denotes a correlation. In practice, the terms in
urly brackets are computed in the Fourier domain, in ac-
ordance with the convolution- and correlation-Fourier
heorems.45,51 We assume that the arrays (or region-of-
nterest subarrays) used in Fourier calculations are suffi-
iently padded so that boundary aliasing problems can be
gnored. In computing the derivative of the OTF con-
traint with respect to h [rightmost term in Eq. (23)], we
ave used the property of the discrete Fourier transform,
�x*�=NdF−1�x�, where x* is the conjugate of x.
The spatial Laplacian of the object in Eq. (22) may be

omputed by convolving the spatial object gradient with a
radient mask [cf. Eq. (18)] as proposed by Mugnier et
l.52 Alternatively, the object may be convolved directly
ith the following Laplacian operator mask, which we
nd to be faster and yield finer results:

�r
2ô = ô�r� � �L, �24�

here in two dimensions

� =
1

12
, L = �

− 1 − 2 − 1

− 2 − 12 − 2

− 1 − 2 − 1
� �25�

nd in three dimensions

� =
1

16�1 + ��
,

L = ��
− 1 − 1 − 1

− 1 − 2� − 1

− 1 − 1 − 1
�, �

− � − 2� − �

− 2� 16�1 + �� − 2�

− � − 2� − �
�,

�
− 1 − 1 − 1

− 1 − 2� − 1

− 1 − 1 − 1
�� , �26�

here � once again compensates for the relative loss in
esolution in the z versus xy directions (typically �3).

. Automatic Hyperparameter Estimation
ethods to estimate the hyperparameters that tune ob-

ect regularization terms such as Eq. (9) have been a sub-
ect of considerable attention.24–27,53–59 A number of ap-
roaches have been advocated including L-curve analysis
nd generalized cross validation.54,55 These heuristic
ethods are computationally expensive, essentially re-

uiring that multiple deconvolutions be performed over a
rid of �o values for each image to be processed. Other
ore advanced and theoretically rigorous approaches at-

empt to optimize hyperparameters jointly with object
econstruction.54,58,59 These methods aim to maximize the
arginal likelihood of observing the measured image

iven an incomplete data set over the space of hyperpa-
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ameters: ��̂r , �̂o�=arg max�r,�o
p�i ��r ,�o�; this is function-

lly equivalent to maximizing the ratio of partition func-
ions, Z /ZoZn [cf. Eq. (6)], with respect to the
yperparameter variables.27,59 In practice, these methods
equire nontrivial Monte Carlo expectation-maximization
ampling steps prior to object reconstruction, which in-
reases the computational expense of a deconvolution
onsiderably.24,57 In contrast to all of these methods, our
IDA approach directly calculates hyperparameter esti-
ates using a semiempirically-based scheme, forgoing

ny stochastic sampling steps or comprehensive grid
earching.

Our initial efforts to derive an automatic scheme were
ounded upon a large collection of deconvolution results
enerated over a grid of �r and �o values spanning several
rders of magnitude. We used a variety of different 2D ob-
ect types and natural scenes to build a reference set of
mages covering a broad range of signal-to-noise ratios. A
ubset of these reference objects is shown in Fig. 2. These
eference images were used to assess deconvolution qual-
ty as a function of hyperparameter pairs. From a grid
earch over hyperparameters, a plane of acceptable
�r ,�o� solutions (determined by visual inspection) was
ound to exist, in agreement with observations by Jalo-
eanu et al.26 This finding implies that one hyperparam-
ter may be defined while the other hyperparameter is op-
imally adjusted to balance data fidelity with object
egularization. Within the AIDA cost function framework
or a single image frame, we found a balance can be
chieved by setting �r according to

�r � �w�r�/�G �27�

nd computing �o directly via the approach detailed be-
ow. The form of �r was motivated by general trends ob-
erved in the aforementioned set of grid search results as
ell the desire for a simple scalar form for �o (see below).
From Eqs. (8) and (9), the following partition function-

ike integrals may be defined over the distribution of pos-
ible data-model variations, �� i−o � h, and the distribu-
ion of possible gradient norm values for each pixel
lement:

�n�r���� ��
�

exp�− ��r�2/2w�r��d�, �28�

ig. 2. Subset of reference objects used to test AIDA and establi
aximum intensity set to 100, 1000, or 10,000) was blurred with

nd Gaussian detector noise added according to Eq. (34) to yield
�o�r���
�o
 � �

�o�r�


exp�− �o� 
�o�r�


��r�

− ln�1 +

�o�r�


��r� ���d
�o�r�
 . �29�

convenient relation linking �r and �o can be obtained by
quating these integrals:

�n�r���� � �o�r���
�o
,

�2�w�r� = �re
�o�

1

�

e−�ot/t−�odt.

��r� 1

�o
+ 1� , �30�

here the approximation holds for �o�10. The element-
y-element equivalence of these integrals essentially as-
umes that the behavior of each pixel/voxel element can
e decoupled and that the Gibbs distribution (and thus
artition function Z) of Eq. (5) can be represented as a
roduct of separable functions (i.e., a mean-field
pproximation).59 Equating these integrals effectively de-
nes the balance of maximum-likelihood estimation with
dge-preserving regularization: it is achieved by properly
ormalizing the probability distributions for data fidelity
nd object gradient norms with respect to one another. In
ore rigorous marginal likelihood–based hyperparameter

stimation approaches,24,54,57–59 partition functions over
rimitive model variable(s) (e.g., i or o) are used, which
ead to nonanalytical equalities that require expectation-

aximation sampling in order to be solved. Our scheme
stimates the sum over all states using conglomerate
ariables instead [Eqs. (28) and (29)], leading to the ap-
roximate though analytical relation of Eq. (30). Solving
or �o in expression (30):

�o = ��2�w�r�/�r − 1�−1. �31�

his definition, along with the vector definition of �r, Eq.
27), leads to a simple, pixel-independent scalar expres-
ion for � :

utomatic hyperparameter estimation scheme. Each object (with
ssian PSF (FWHM=4 pixels), had intensity-based Poisson noise
es of images with SNR=−10, −3, 0, 7, 10, 17, 20, or 27 dB.
sh its a
a Gau
a seri
o
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�o = ��2��G − 1�−1. �32�

rom Eq. (17) and given the quantized nature of real,
oisy data, �G is guaranteed to be ��� /2 such that �r and
o are well defined by Eqs. (27) and (32). Using w�r� as
efined in Eq. (17) and object gradients and Laplacians
alculated according to expressions (18)–(26), this estima-
ion scheme is quite robust for data with PSFs of compact
patial extent (effective FWHM �8 pixels). For imaging
ata with spatially extended or oversampled PSFs, the
ixel-by-pixel integral equivalence approximation used in
q. (30) breaks down and can lead to somewhat overregu-

arized results. In such cases, scaling the single scalar hy-
erparameter estimate, �o, down by typically no more
han a factor of 10–100 is sufficient to generate optimal
econstructions. It is important to note that careful esti-
ates of �G and w�r� in accordance with Eq. (17) are im-

ortant for the success of this estimation scheme.
For the OTF constraint, a quadratic term in real space

Eq. (8)] must be balanced with a quadratic term in Fou-
ier space [Eq. (12)]. Consistent with the fast Fourier
ransform40 normalization scheme used in our algorithm,
e have found that this balance can be approximately
chieved by setting

�H = 1/Nd, �33�

here Nd, the number of pixel/voxel elements, is as-
umed. The heuristic motivation for this comes from the
ower conservation relation of Parseval’s theorem for dis-
rete Fourier, transforms, in which �r=0

Nd−1 �x�r��2

�1/Nd��k=0
Nd−1 � x̃�k��2.

. VALIDATION AND APPLICATION TO
ONO-FRAME DATA

n Fig. 3, we present classical deconvolution results for
ne of our synthesized data sets to demonstrate the effec-
iveness of the automatic estimation scheme. The brain
bject �256�256 pixels� shown in Fig. 3(A) is from a
agnetic-resonance imaging (MRI) scan available from

he Computer Vision Group at the University of
ranada.60 This object was convolved with a Gaussian

ig. 3. Classical deconvolution test results using automatic hype
nd 20 dB; top, convolved image with Poisson and Gaussian noise
mprovement, 
SNR [Eq. (36)]. B: Top, original 256�256 pixel br
mage �g� with Gaussian PSF �h� inset (FWHM=4 pixels).
SF of FWHM of 4 pixels and normalized to a maximum
ntensity of 1000. This noise-free image, g�r�, was sub-
ected to a Poisson noise transformation. Varying
mounts of Gaussian noise were subsequently added
mimicking CCD detector readout noise) according to a
redetermined image signal-to-noise ratio (SNR), which
e define as

SNR � 10 log10

var�g�r��

�w�r��r
, �34�

here var�g�r�� is the variance of the noise-free image.8

Significant denoising can be observed after deconvolu-
ion [Fig. 3(B)] with a contrast enhancement of about
0%. Average contrast improvement was computed by
ultiple �N�6� comparisons of average intensities over

n area of 3�3 pixels within a region of interest �IROI�
ersus over an adjacent background region �Ibackground�
separated by at least 4 pixels, the FWHM of the PSF):


Contrast ���IROI�area − �Ibackground�area

�Ibackground�area
�

N samples

.

�35�

sing the definition


SNR � 10 log10


i − o



 ô − o

, �36�

e see signal-to-noise improvements of 6.2, 4.2, and
.4 dB for the deconvolution results of SNR=0, 10, and
0 dB images, respectively.
Figure 4 shows the deconvolution results for the SNR

20 dB image of Fig. 3 over a grid of �o or �r values that
re 20 times larger or smaller than those automatically
stimated. Using the estimated hyperparameters (Fig. 4,
enter) gave the best visual results and balance between
ata fidelity and regularization. Using the estimated �̂o

nd a value of �r= �̂r /20 also gave acceptable results
though contrast was slightly compromised). In general,
he deconvolution results were generally less sensitive to
hanges in �r than �o over the range of values examined.

eter estimation. A: Deconvolution series for image SNR of 0, 10,
ttom, corresponding deconvolution result �ô� and signal-to-noise
ect with intensities from 0–1000 �o�; bottom, convolved noise-free
rparam
�i�; bo

ain obj
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lthough not shown, we note that AIDA’s hyperparameter
stimation scheme works equally well for a range of maxi-
um intensity scalings (i.e., images for which the maxi-
um intensity of the noise-free image is 100 or 10,000).
econvolution results were typically generated within
0–90 s per �256�256� image pixels on a 2.8 GHz Intel
eon Linux machine.
In Figs. 5 and 6, we demonstrate the capabilities of the

ig. 4. Automatic hyperparameter estimates are close to the o
mage from Fig. 3, over a grid of �o and �r values that are 20� l
ution result using the automatically estimated hyperparameter
anel.

ig. 5. Myopic deconvolution results for a test phantom. A: The
�SNR=17 dB�. C: Reconstructed object after classical deconvol


SNR=1.7 dB�. D: Reconstructed object after myopic deconvolut
s an initial PSF guess �
SNR=2.9 dB�. E: Same as D, except
stimate �
SNR=4.2 dB�. F: Reconstructed object after classical
arameter settings as in (E) �
SNR=3.8 dB�.
yopic deconvolution approach with a synthetic phantom
omposed of pointlike, line, and smooth extended ele-
ents. The object in Fig. 5(A) was convolved with a true
SF [Fig. 6(B), left] taken from a set of aberrated PSFs
enerated using pupil functions with random Zernike
olynomial phase components of up to order 15
Gaussian-distributed amplitudes with mean � 0 and
tandard deviation=0.1). The resulting noise-free image

m. Classical deconvolution results for the SNRI � 20 dB brain
r smaller than those estimated automatically. Center: Deconvo-
al-to-noise improvements are shown in the lower right of each

l phantom object, o. B: The convolved and noisy phantom image,
using the average of synthetically generated PSFs (see Fig. 6)
th automatic hyperparameter estimates and the average PSF, h̄,
perparameter, �o, is scaled to 1/2 of the value of the automatic
olution using the true PSF [see Fig. 6(B)] with the same hyper-
ptimu
arger o
s. Sign
origina
ution
ion wi
the hy
deconv
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as normalized, and Poisson and Gaussian noise was
dded as described above for a combined image SNR of
7 dB [Fig. 5(B)].
Classical deconvolution of this image using a fixed av-

rage PSF �h̄� results in significant denoising and con-
rast enhancement �
SNR=1.7 dB�, although artifacts
an be seen in the reconstructed object [Fig. 5(C), bottom].
llowing the PSF to relax through myopic deconvolution

Fig. 5(D)] helps to remove these artifacts and further im-
roves image contrast �
SNR=2.9 dB�. Object recovery is
ot perfect, however, as highlighted in the bottom panel of
ig. 5(D): (1) dotlike features are larger than in the true
bject, and two out of the three dots shown are not fully
esolved; (2) some residual haze surrounds the two inter-

ig. 6. PSFs associated with the myopic deconvolution of the
est phantom. A: Sample PSFs used to myopically deconvolve the
est phantom data of Fig. 5. PSFs were generated as the modulus
f the Fourier transfer of pupil functions with random Zernike
olynomial phase components of up to order 15 (OSA convention;
aussian-distributed amplitudes with mean=0 and standard
eviation=0.1). Resulting PSFs have an average FWHM between
and 4 pixels. To simulate typical PSF measurements, Poisson

nd Gaussian noise was added for a PSF image SNR of 17 dB. B
from left to right): The true PSF, htrue, used to generate Fig. 5(B);
he average PSF, h̄, used as the initial guess in myopic deconvo-
ution; the myopically recovered PSF, ĥ, using a harmonic fre-
uency constraint (Subsection 2.C.3); and the myopically recov-
 t

band-limited
ecting line elements, and the square-on-square feature is
lightly compressed in the lateral direction. The diameter
f the dots can be reduced, and the remaining haze
round the line elements can be removed by scaling the
stimated �̂o hyperparameter down by a factor of 2 (Fig.
(E); 
SNR=4.2 dB). With slightly lower regularization,
owever, the square-on-square feature becomes less
mooth, highlighting the intrinsic balance between noise
uppression and edge preservation. For comparison, clas-
ical deconvolution results using the true PSF and the
caled �o hyperparameter value are shown in Fig. 5(F)

SNR=3.8 dB�. The two lower dot features (separated
eak to peak by �3 pixels) remain unresolvable, although
his is consistent with the resolution limitations of the
imulated PSFs (FWHM of 3–4 pixels). Stricter a priori
onstraints that assume pointlike objects may lead to im-
roved separation of these features.29,61 Owing to imper-
ect noise suppression, the edges of the square-to-square
eature are more jagged in the classical result versus
yopic deconvolution result, in which the PSF is allowed

o relax. The relaxation of the PSF also results in better
oise suppression and fewer noise speckles in the myopic
econvolution result versus the classical result; this leads
o an improved 
SNR for the myopic result over the clas-
ical result. Artifactual lateral compression of the square
eatures is not seen in the classical result as it is in the
yopic result, however.
Photometric comparisons with the true phantom object

re shown in Table 1 for each of the highlighted features
n Fig. 5. With the exception of dotlike features, myopic
econvolution using automatic hyperparameter estimates
an recover intensity values to within �10%; this is only
lightly improved by �o scaling. However, using the true
SF or scaling down �o can dramatically improve the pho-
ometric recovery over the dotlike features by 15%–30%.

Displayed in Fig. 6(B) are the true PSF �htrue�, the av-
rage PSF used as the initial guess in myopic deconvolu-
ion �h̄�, the myopically recovered PSF using AIDA �ĥ�,
nd the myopically recovered PSF using a band-limited
TF constraint �ĥband-limited�. Myopic deconvolution using
simple band-limited constraint results in an expected

elta-function-like solution for the recovered PSF. Myopic
econvolution using a harmonic frequency constraint
ased on sampled PSFs prevents a delta-function-like
olution and leads to the recovery of the Airy ring around

he core of the true PSF that is only faintly visible in the
Table 1. Photometric Accuracy of the Highlighted Object Features in Fig. 5 after Classical and Myopic
Deconvolutiona

% Intensity of True Object, o

bject �dots� squareinner squareouter lineoblique linehorizontal

mage, i 27.9 71.6 92.9 60.1 59.0

lassical decon �h̄� 52.1 87.2 99.6 78.9 79.9

yopic decon (auto) 68.9 94.8 101.5 98.7 92.9

yopic decon ��̂o /2� 85.3 97.8 101.1 104.7 95.0

lassical decon �htrue , �̂o /2� 98.0 93.3 100.6 97.9 97.6

aCategory �dots� was computed using the average intensity over a circular area with a radius characterized by half the peak dot intensity and is the average of the three dots
hown in Fig. 5. Values for the square and line features were calculated using the median intensity over an area minimally enclosing the same feature in the true object, o.
red PSF, ĥ , using a band-limited frequency constraint.
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verage PSF. Artifactual line elements of the object are
lso present in the recovered PSF, however. This leads to
more laterally extended PSF and gives rise to the slight

ompression observed for the myopically reconstructed
bject [Figs. 5(D) and 5(E)]. Given the highly variable
ounds of the sampled PSFs [Fig. 6(A)], complete separa-
ion of object and PSF features in myopic deconvolution is
nlikely without further constraints.
Below, we demonstrate the effectiveness of AIDA in
yopically deconvolving real imaging data for two astro-

omical targets, Io and Titan.

. Io
o is the innermost Galilean satellite of Jupiter with a di-
meter similar to Earth’s moon ��3600 km� and is known
o be volcanically active. To understand the origin of Io’s
olcanism, its time evolution, and relationship to tidal
eating, its volcanic activity needs to be monitored over a

arge time baseline. With the demise of the Galileo space-

raft that was in orbit around the Jovian system until
003, the monitoring of Io volcanism now lies in the
ands of ground-based observers.
When Io is closest to earth, its angular size is
1.2 arcsec, which is very close to the natural angular

esolution (seeing) provided by ground-based telescopes.
ecause of its brightness (apparent visual magnitude,
v�5), Io is ideally suited for observation by adaptive op-

ics (AO) systems. Volcanism on Io has been monitored
egularly in the near infrared (NIR) between 1 and 5 �m
y one of us (F. Marchis) using the Keck 10 m telescope
O system.62–64 The angular resolution provided by AO
aries with the wavelength range of observations from
5 milli-arcsec (mas) in the Kc band (centered at 2.2 �m)
o 100 mas in the Ms band �4.7 �m�, corresponding, re-
pectively, to �170 and �305 km on the surface of the sat-
llite. Such spatial resolution is comparable with that of
he Galileo observations of Io in the same wavelength
ange.65

Marchis and co-workers62,64 used MISTRAL to process
he first high-resolution AO images of Io volcanic activity.
ig. 7. Myopic deconvolution results for AO-corrected images of Io, a volcanically active moon of Jupiter. The PSF of the system was
stimated using images of a star located near the target with the same visible magnitude. PSF variability [characterized by v in Eq. (13)]
epends mainly on the brightness of the target, the quality of the atmospheric turbulence, and the wavelength range of observations. We
stimated that FWHM variability of the PSFs from ten nights of observation to be �6% in the K band.64
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e compared the performance of AIDA (with automatic
yperparameter estimation) with that of MISTRAL with
set of Io images acquired in 2003. The deconvolution re-

ults for three different broadband filter observations are
hown in Fig. 7. Each basic-processed filtered image was
shift-and-added synthesis of five observations (�5 min

ach; background subtracted and flat fielded). The im-
rovement in image contrast after deconvolution is obvi-
us. In the Kc band, the surface reflectance or albedo
arkings including dark paterae and bright frost areas

re visible on the surface of Io. The general features of Io
re in excellent agreement with those of Galileo/Voyager
aps shown in Fig. 8. AIDA and MISTRAL deconvolution

esults are extremely similar, with a correlation coeffi-
ient of 99.4% when calculated over the area of the satel-
ite.

For a single, 512�512 image, our AIDA implementa-
ion was 15–20 times faster than the original MISTRAL
mplementation (e.g., �25 min versus �7 h on a 1.8 GHz
Mac G5 computer running Mac OS X 10.3). In practice,

ultiple MISTRAL deconvolutions must typically be per-
ormed to hone in on hyperparameter values that yield
he best results. This is often a time-consuming and labo-
ious process: between 10 and 20 MISTRAL deconvolu-
ion runs are usually necessary to locate an optimal
�r ,�o� pair. Thus, the practical gain in processing time of
IDA compared with MISTRAL is �100-fold.
The image of Io in the Ms band is radically different

han for the Kc band, being dominated by the localized
hermal emission of the volcanoes. In the Lp band (inter-
ediate wavelength, �3.8 �m), large-scale albedo fea-

ures on the surface are visible as are the thermal emis-
ions of the active centers. After deconvolution, several
dditional hot spots were revealed on the hemisphere of
o. Most of them can be found in the basic-processed im-
ge upon more careful scrutiny. The Lp band result gen-
rated with AIDA using automatic hyperparameters is

ig. 8. Reconstructed appearance of Io on January 26, 2003, at
7:38 UT observed from Earth. This image is based on Galileo
olid state imaging and Voyager composite maps at a resolution
f 20 km (courtesy of P. Descamps, Institute de Mécanique Cé-
este et des Calculs d’Éphémérides). Note that albedo features
e.g., calderas/craters) can also be seen on the deconvolved image
cf. Fig. 7).
oticeably different (more diffuse bright spot and some
light ringing) compared with that of MISTRAL, although
hese differences can be reduced by manually adjusting
he hyperparameters (data not shown).

The accurate recovery of image intensities from which
he temperature and emission areas of these hot spots can
e determined (e.g., assuming a blackbody emission law)
s also of interest. Hot-spot flux was measured using ap-
rture photometry on the deconvolved image, assuming
hat most of the flux is gathered in an area slightly larger
han the angular resolution on the image.66 This is a good
pproximation for hot spots with a peak contrast lower
han 20%, since the intensity of the first Airy ring is neg-
igible compared with the variation of brightness on the
urface. For the extremely bright hot spot (outburst) on
he Ms band image, a prominent Airy ring remains after
econvolution. This residual artifact may be explained by
he fact that the Keck PSF is hexagonal in shape67 and
hat its orientation changes with the position of the tele-
cope; optimizing the rotation of the sampled PSFs (and
hus the mean PSF to which the PSF estimate is con-
trained) would likely minimize this artifact. Since this
roblem would not significantly affect the scientific analy-
is of the image, we have not pursued this matter further.
he hot spot can be seen on the basic-processed image
ith a very good SNR, and therefore its integrated inten-

ity can be easily measured after comparison with the
SF. Overall, the deconvolution of Io images with AIDA
rovides excellent reconstructions, which can be used to
nalyze surface changes on Io and to detect the faintest
ctive centers and quantify their intensities.

. Titan
itan, Saturn’s largest moon, was largely a mystery until
ery recently. Observations collected by the Voyager
pacecraft in 198168 showed that Titan is obscured by a
ense and opaque atmosphere consisting mainly of nitro-
en. The surface of this 0.9� angular-sized satellite, how-
ver, can be probed in the NIR through methane windows
sing such high-resolution techniques as speckle

maging69 and AO.70 Recent AO observations of its atmo-
phere revealed the presence of clouds and a complex
tructure with seasonal variability. The NASA-ESA
assini–Huygens probe in orbit within the Saturnian sys-

em and an intensive campaign of observations using AO
ystems available on the Keck 10 m telescope (Mauna
ea, Hawaii) and the ESO-8 m Very Large Telescope

Cerro Paranal, Chile) are in place to help understand
his complex satellite.

In Fig. 9(A), we show a ground-based observation of Ti-
an taken on January 15, 2005, one day after the Huygens
robe landed on its surface. Titan was observed with the
eck AO using the NIRC-2 camera with a pixel scale of
.94 mas through a narrowband He filter �2.06±0.03 �m�.
t this wavelength, the atmosphere is nearly transpar-
nt, and most of the structures visible on the image are
arger than 330 km (corresponding to 55 mas). A remark-
ble gain in image contrast is obtained after AIDA decon-
olution, as shown in Fig. 9(B). This imaged hemisphere
ontains the landing site of the Huygens probe and was
egularly observed by the Cassini spacecraft [Figs. 9(C)
nd 9(D)]. The similarity between the Imaging Science
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ubsystem images (with a slight rotation of Titan) is
triking. The smallest albedo structures detected after de-
onvolution have clear equivalents in the higher-
esolution image71 (see arrow markings). This comparison
alidates the efficiency of our algorithm and demon-
trates the absence of significant artifacts on the decon-
olved image. A full scientific analysis of this and numer-
us other Titan observations and deconvolution results is
resented elsewhere.71

. APPLICATION TO MULTI-FRAME
ATA SETS
hen multiple AO images of a common object are ac-

uired, they are often simply combined into a single shift-
nd-added image, which is then deconvolved. This prac-
ice has been demonstrated by others to be suboptimal; a
ore effective data reduction strategy would be to decon-

ig. 9. Myopic deconvolution results for AO-corrected images of
itan, the largest moon of Saturn. A: Basic-processed image of Ti-
an taken on January 15, 2005 (one day after the Cassini–
uygens probe landing), using the ground-based Keck AO sys-

em and a narrowband filter centered at 2.06 �m to probe surface
lbedo features.71 B: Keck AO image of Titan after myopic decon-
olution with AIDA. C: Mosaic image of Titan based on 1.3 km
esolution data taken in the infrared with the lmage Science
ubsystem (ISS) instrument aboard the Cassini spacecraft

http://photojournal.jpl.nasa.gov/catalog/PIA06185). D: False-
olor visible and infrared mosaic image of Titan taken by the ISS
http://photojournal.jpl.nasa.gov/catalog/PIA07965). Atmospheric
eatures are shown in red and surface features in green and blue.
lthough the orientation of the Keck and ISS observations are
lightly different, similar structures are seen on the deconvolved
mage as in the ISS image, validating the effectiveness of AIDA.
wo ISS images were chosen to illustrate the variability of the
atellite appearance due to the presence of haze and clouds. Ar-
ows serve as reference markers to a common feature. Images of
he six sampled PSFs used in the myopic deconvolution process
re shown in the bottom panel along with the reconstructed PSF
n the green frame on the right.
olve the set of images in a global fashion, linking com-
on variables while maintaining the distinctiveness of

ach observation. Extending the MISTRAL approach to
imultaneously deconvolve multiple image frames is an-
ther feature of AIDA. Below, we present deconvolution
esults for two different multi-frame data sets. The first
onsists of AO images of Uranus’s atmosphere and is used
o demonstrate AIDA’s multi-PSF deconvolution capabili-
ies, in which there is a common object but a variable
SF. The second data set consists of time-lapsed fluores-
ence microscopy images of yeast microtubule dynamics
nd is used to demonstrate AIDA’s multi-object mode, in
hich there is a common PSF but different objects be-

ween frames.

. Atmosphere of Uranus (Multi-PSF)
ince the Voyager spacecraft encounter of the planet Ura-
us in 1986, interest in this planet has been revitalized
ith the discovery that its atmosphere is considerably
ctive.72 High-angular-resolution imaging, however, is
ecessary to detect cloud motions,73 faint rings, and small
atellite systems.74,75 The extended disk (diameter
3.6 arcsec) of the planet (integrated apparent visual
agnitude, mv�6) is bright enough to be used as a refer-

nce for wavefront sensor analysis on most AO systems.
owever, since the position of the centroid on the wave-

ront is not well determined in the case of a quad-cell ap-
rture wavefront sensor for such an extended object, the
tmospheric correction is degraded in the final image, and
rtifacts may appear in several frames.75 We tested AIDA
n observations of Uranus taken on October 3, 2003, with
he Keck AO system and its NIRC-2 camera, using a
roadband filter centered at 1.6 �m (H band). Five 30 s
rames recorded in less than 8 min were processed using
tandard near-infrared data reduction techniques (flat-
eld, sky subtraction, and bad pixel removal). To estimate
he PSF for myopic deconvolution, we imaged Puck, a
right satellite of Uranus located 2.4� away from the cen-
er of the planet and whose motion was negligible during
he exposure time. Given the large imaged size of Uranus
nd size of the image frames �1024�1024 pixels�, using
ISTRAL for deconvolution would not have been prac-

ical due to the long processing time needed
�23 h/deconvolution on a Sun Ultra 10 computer), espe-
ially since we would have needed to run multiple decon-
olutions to determine a good choice of regularization pa-
ameters. Deconvolution using AIDA with automatic
yperparameter estimation was significantly faster
45 min for mono-frame deconvolution and 1.5 h for multi-
SF deconvolution on a 2.8 GHz Intel Xeon Linux ma-
hine) with the possibility of analyzing all AO data frames
imultaneously.

Deconvolution results in significant image sharpening
Fig. 10), with a gain in contrast of �2–3 on the cloud fea-
ures. A layered structure of the northern haze and some
aint clouds at �40° latitude are revealed, and the struc-
ure of the large clouds on the southern hemisphere is
learer after deconvolution. A ghost outer ring artifact
resent in previous observations using the same Keck AO
ystem75 is visible in several of the individual AO-
orrected image frames [Fig. 10(C)]. This artifact remains
n the mono-frame deconvolution of the shift-and-added
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ombined image but is half as intense in the multi-frame
econvolution result [cf. Figs. 10(D) and 10(E)]. The glare
f Uranus (e.g., see area near the innermost ringlet) is
lso further reduced in the multi-frame deconvolution re-
ult than in the mono-frame deconvolution result. Over-
ll, we find that simultaneous deconvolution of multiple-
rame data is better able to restore low SNR features and
inimize artifacts than the deconvolution of a single

hift-and-added representation of the multiple-frame
ata.

. Yeast Microtubule Dynamics (Multi-Object)
icrotubules are hollow cylindrical polymers that radiate

rom near the nucleus of a cell and serve as tracks upon
hich cellular components are transported. Roughly
5 nm in diameter, these microtubules are formed from
he stochastic polymerization and depolymerization of 	-
nd �-tubulin proteins. The regulation of microtubule dy-
amics has been a topic of investigation for many years in
ell biology, aided greatly by the direct observation of mi-
rotubules using time-lapsed video fluorescence
icroscopy.76

We used AIDA in multi-object deconvolution mode to
rocess time-series images of microtubule dynamics in
he fission yeast, Schizosaccharomyces pombe. Using the
MX wide-field fluorescence microscope system devel-
ped recently in our lab at the University of California,
an Francisco (UCSF), a yeast cell whose microtubules
ere fluorescently labeled using the green fluorescence
rotein fused to 	-tubulin was imaged every second. Each
mage was formed by physically sweeping the microscope
ocus (by linearly moving the sample stage) through the

(fission yeast) cell whose microtubules were fluorescently labeled
icroscope system (data courtesy of Satoru Uzawa, Sedat Lab.
icroscope focus over a 4 �m depth within 50 ms; an image slice
of the original image data after basic processing (bad pixel re-

convolution �image pixel size=80 nm�. B: One-dimensional maxi-
ted as a function of time (kymograph).
ig. 10. Planet Uranus observed with the Keck AO system and
IRC-2 camera on October 3, 2003. Top: A: Multi-PSF deconvo-

ution of five AO-corrected images of Uranus; B: combined shift-
nd-added image of five AO-corrected observations (30 s expo-
ure for each). The gain in contrast after deconvolution is
stimated to be �2, so that cloud features (arrows) can be more
asily identified. Bottom: Close-up of the ringlets of Uranus. C:
asic-processed AO image. D: Multi-PSF deconvolution using six
mage frames. E: Mono-frame deconvolution of a shift-and-added
mage. This ring system is extremely faint and close to the disk of
he planet; intensities of the ringlets are comparable to the in-
ensity of the glare of Uranus as shown in the basic processed im-
ge C. Deconvolution using AIDA significantly improves the con-
rast even on these faint features. The result is slightly better
sing multi-frame versus mono-frame deconvolution. Arrows in-
icate a ghost artifact present in the mono-frame deconvolution
esult, which is reduced in the multi-frame deconvolution result.
ig. 11. Multi-object deconvolution of time-series images of a S. pombe
ith 	-tubulin green fluorescent protein and imaged with the OMX m
CSF). Each time-series slice was generated by axially sweeping the m
as acquired every second for about 4 min. A: A single time-series slice
oval and flat fielding), mono-frame deconvolution, and multi-object de
um intensity projections (generated along the y axis of the slice) plot
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ntire z depth of the cell (�4 �m in 50 ms) every second.
sing estimates of the PSF based on a set of three images

f a 0.1 �m fluorescent bead acquired under similar con-
itions, these time-series data were myopically decon-
olved assuming a common (time-invariant) PSF for the
hole data set and assuming each image was simply a

napshot of a distinct object.
In Fig. 11(A), we show the results of standard myopic

econvolution and multi-object deconvolution with auto-
atic hyperparameter estimates for a single representa-

ive time slice. In Fig. 11(B), the corresponding kymo-
raph plots—1D maximum intensity projections of each
mage as a function of time—are shown for these data.
hese kymograph plots provide a better perspective on
he time-dependent features of microtubule growth and
hrinkage. The mono-frame deconvolution results are sig-
ificantly denoised with improved microtubule contrast.
he multi-object deconvolution results have even better
ontrast enhancement, exhibiting thinner microtubule fi-
ers and a more textured background within the cell cy-
oplasm. It is unclear how much of this texturing may be
rtifactual. However, the fact that each image slice was
econvolved independently with respect to the time axis
nd that a number of cell background features are tempo-
ally persistent in the kymograph suggest that some of
hese grainy features are genuine.
. APPLICATION TO THREE-DIMENSIONAL
ATA SETS
ne main advance of AIDA is the extension of the MIS-
RAL method to deconvolved 3D data commonly encoun-

ered in biological imaging. Unlike the 2D PSFs encoun-
ered in low-numerical-aperture astronomical imaging,
he PSFs in optical microscopy are more diffuse, with sig-
ificant axial (z-dimensional) blurring on the order of
hree times the lateral blur. Deconvolution is expected to
ramatically sharpen image data subject to such out-of-
ocus blur. Recently, Chenegros et al.77 demonstrated the
ffectiveness of MISTRAL’s edge-preserving regulariza-
ion term in deconvolving synthetic 3D retinal images.
ere, we show myopic deconvolution results for two 3D
ata sets, one synthesized from magnetic-resonance im-
ging (MRI) data of a frog and another of real, wide-field
uorescence microscopy data of chromosomes within cells
ndergoing cell division.

. Three-Dimensional Frog MRI
e constructed synthetic 3D frog images �128�256
256 pixels� by convolving a MRI volume data set from
he Whole Frog Project (Lawrence Berkeley National
aboratory)78 with a PSF derived from microscopic imag-

ng of a subresolution �0.1 �m� fluorescent bead; Poisson
ig. 12. 2D volume projections for myopically deconvolved 3D frog image stacks with image SNRs of 0 and 20 dB. A: xy projection; B: yz
rojection. Each image is shown using a full intensity scale (from minimum value to maximum value). Automatic hyperparameter esti-
ates were used along with an axial resolution gradient factor of �=3 (see Subsection 3.C). Images are scaled from minimum to maxi-
um values.
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nd Gaussian noise was added to the convolved image as
escribed earlier. The PSF used had a FWHM in the lat-
ral direction of �3 pixels and an effective resolution loss
n the z direction ��� of �3 [see Eq. (21)]. Using an en-
emble of similarly acquired experimental PSFs, these
rog images were myopically deconvolved using automatic
yperparameter estimates (�6 h on a 2.8 GHz Intel Xeon
inux machine).
Additive 2D volume projections for the raw and decon-

olved 3D image stacks for image SNRs of 0 and 20 dB
re shown in Figs. 12(A) (en face) and 12(B) (side view).
he denoising and object reconstructions for these data
re striking. The quality of the deconvolution results con-
eyed by these 2D projections is comparable to that seen
rom a comparison of individual 2D slices. Representative
lices through the 3D volume stack of the original object,
0 dB SNR image, and deconvolution result are shown in
ig. 13; also shown are intensity line profiles (denoted by
n asterisk) through the eye region of the 2D frog slices.
econvolution with AIDA leads to substantial photomet-

ic restoration of the original frog data, with a signal-to-
oise improvement �
SNR� of 5.7 and 5.1 dB for image
NRs of 0 and 20 dB, respectively.

. Mitotic Chromosomes in Drosophila Embryos
early 50 years since the atomic structure of DNA was

lucidated, the higher-order structural organization of
NA within chromosomes of cells remains poorly under-

tood. With recent advances in high-resolution micro-
copic imaging and fluorescent labeling technology, how-
ver, discerning the mesoscopic arrangements of DNA
ithin living cells is becoming more of a reality. A primary

nterest of ours is to better understand the detailed struc-
ural changes of chromosomes as a cell divides in a pro-
ess called mitosis. During mitosis, a cell’s chromosomes
re unraveled, condensed, and separated; defects in chro-
osome structure during any of these mechanical steps

ould have devastating consequences on the fidelity of ge-
etic transmission to daughter cells.79

Drosophila melanogaster (fruit fly) embryos offer a
nique opportunity to study chromosome structural
hanges during mitosis. Cells in early embryos (within
–3 h) undergo multiple rounds of cell division in an or-
ered and highly reproducible manner. Using the OMX
icroscope system mentioned earlier (Subsection 5.B), a

D image stack �32�512�512 pixels� was acquired of a
ell-cycle-10 D. melanogaster embryo fixed in 10% formal-
ehyde and mounted in glycerol. Cells in this embryo
ere stained with the DNA-specific dye, DAPI, and cap-

ured undergoing anaphase, the stage of mitosis in which
hromosomes separate. This image stack was deconvolved
yopically using a PSF derived from an image of a

70 nm fluorescent bead under similar imaging settings.
mage pixel spacing was 80 nm in xy and 150 nm in z, for
total image stack thickness of 4.8 �m. � was set to 3.2

ased on the extent of a measured OTF in the lateral ver-
us axial directions.

Shown in Fig. 14 are 2D maximum intensity projec-
ions of representative portions of the original 3D image
tack and the result after myopic deconvolution. Although
he original data shown are of especially good quality so
hat most chromosome arms can be distinguished in Fig.
4(A), chromosome boundaries are significantly more de-
arcated in the deconvolution result. The benefits of de-

onvolution are even more pronounced in Fig. 14(B) in
hich there is greater blurring in the axial versus lateral
irections: finer structures and corrugated banding pat-
erns of the chromosome arms become noticeable; the ar-
ows highlight a few representative areas showing im-
roved contrast in fine image features. Some residual
our-glass PSF blur remains after deconvolution, how-
ver, and appears to become more prominent with in-
reasing z depth (see, e.g., lower left of deconvolution re-
ult, Fig. 14(B)). This blur may be attributed to greater
ndex-of-refraction aberrations between the microscope
bjective lens and the sample as one focuses deeper into
he embryo. The true PSF in this case is thus likely to be
epth dependent, although space-invariant PSFs are as-
umed in the current AIDA deconvolution framework.

To achieve the nonblurry, visually balanced deconvolu-
ion result of Fig. 14, we found it necessary to scale the
utomatic hyperparameter estimate, �̂o, down by a factor
f 10. Inaccurate hyperparameter estimation is likely due
o at least one of four possible causes. First, since only a
ingle PSF estimate was available for these data [in
hich case the OTF constraint is based simply on the
hotonic-noise variance (see Subsection 3.A)], the calcu-
ated OTF statistics may not be sufficient to guide the

yopic deconvolution toward a more correct OTF. A lower
ˆ

o likely compensates for imprecise OTF statistics. Sec-
nd, as alluded to above, depth-dependent variations of
he true PSF are not accounted for in our imaging model
nd may lead to compromised object reconstructions.
hird, there may be noise sources (e.g., out-of-focus, scat-

ered background light) that are not accounted for by the
ssumed noise model; the effectiveness of the hyperpa-

ig. 13. Representative 2D slice and line profile through the
riginal 3D frog object �o�, 20 dB SNR image �i�, and deconvolu-
ion result �ô�.
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ameter estimation scheme is predicated upon good esti-
ates for the Gaussian and Poisson noise statistics (as

iscussed in Subsection 3.D). Fourth, out-of-focus contri-
utions to the image stack from areas of the embryo out-
ide the image stack are not accounted for in the current
maging framework. The effects of these factors on decon-
olution outcome and strategies to compensate for them
re currently being explored by our group.

. SUMMARY AND FUTURE DIRECTIONS
e have reimplemented and extended the MISTRAL

pproach12 to myopically deconvolve, as far as we know
or the first time, multiple-image-frame data and 3D im-
ge stacks. Unlike MISTRAL, which is implemented us-
ng the commercial Interactive Data Language (Research
ystems, Inc., Boulder, Colorado) and has proprietary
ource code, our adaptive image deconvolution algorithm,
IDA, was implemented using freely available Numerical
ython and is intended for open-source development.
IDA runs at least 15 times faster than the original MIS-
RAL implementation. Importantly, AIDA incorporates a
imple yet robust scheme to estimate regularization hy-
erparameters, which greatly simplifies the tedious and
elicate though necessary task of balancing maximum-

ig. 14. Chromosomes of mitotically dividing cells (cell cycle 10
ere stained with the fluorescent dye, DAPI, and embryos were

maged using the OMX microscope system with a 100� oil-imm
aximum intensity xy projections of two subregions of the acqu

onvolution result using �=3.2 and �o= �̂ /10 (bottom) (see text). I
fter AIDA deconvolution. B: xz projections for the data in A. A
estoration is observed in the axial �z� direction, although some re
as 80 nm in the lateral �xy� direction and 150 nm in the axial d
ikelihood estimation with object regularization and noise
uppression. Object reconstructions can be generated us-
ng AIDA that are comparable with those of MISTRAL,
ith high photometric precision and good edge preserva-

ion and without the need to sample (typically 10–20) dif-
erent hyperparameter settings in order optimize the de-
ree of regularization. This results in a practical
fficiency gain of AIDA over MISTRAL of greater than
00-fold.
Multiple image observations are commonly acquired in

daptive optics imaging, although they are often com-
ined into a single averaged image before deconvolution.
econvolving these images simultaneously, however, is a
ore effective data reduction strategy.11,31–33 The multi-

rame deconvolution results for the Uranus AO observa-
ions show that leveraging invariable aspects of the data
hile retaining the unique variations between distinct ob-

ervations leads to object reconstructions with crisper de-
ails than the corresponding mono-frame deconvolution
esult.

AIDA’s multi-frame deconvolution capabilities are cur-
ently limited to data with a single object and multiple
ariable PSFs (Mo=1; Mh�1) or a single PSF and mul-
iple variable objects (Mh=1; Mo�1). It would be straight-
orward to extend the algorithm to handle data sets in

hase) within a D. melanogaster (fruit fly) embryo. Chromosomes
n 10% formaldehyde fixation buffer A, mounted in glycerol, and
objective (data courtesy of Yuri Strukov, Sedat Lab, UCSF). A:
image stack after basic processing (top) and of the myopic de-

(see arrows) highlight corresponding areas of improved contrast
f improved contrast are highlighted by arrows. More dramatic
blurring remains, noticeably with increasing z. Image pixel size

n. Bar=4 �m.
, anap
fixed i
ersion
ired 3D
nsets
reas o
sidual
irectio



w
k
t
w
w
a
p
i
i
U
o
t
g
m

d
w
f
a
d
p
t
c
i
t
d
c
n
Z
p
a
t
i
a
p
w
d

p
m
s
r
b
i
s
e
n
a
f
l
m
f
n
d
W
t
f
r
j
a
n
a

m
m
b
s
a
p
o
p
u
r
a
h
s
p
i
s

A
W
M
m
C
L
i
t
l
o
n
K
n
U
m
M
J
M
0
e
a
c
p
l
G
v

a

i
U

e

R

1598 J. Opt. Soc. Am. A/Vol. 24, No. 6 /June 2007 Hom et al.
hich multiple objects are imaged using different though
nown transformations of a fundamental PSF describing
he optical system. This is relevant, for example, to multi-
avelength imaging in astronomy34 and microscopy in
hich the PSF characteristics as a function of wavelength
re well established and can be predicted. Such an ap-
roach could also be applied to process tomographic imag-
ng data in which the dependence of the transfer function
s known and parametrizable as a function of tilt angle.
sing such a multi-object–multi-linked-PSF approach,

ur group is currently exploring the application of AIDA
o deconvolve electron microscopy (EM) images, with the
oal of improving 3D object reconstructions from EM to-
ographic data.
AIDA is equally effective in deconvolving 3D image

ata and 2D data, and deconvolution times scale linearly
ith the size of the image data. In the current AIDA

ramework, each image pixel element is treated as a vari-
ble to be optimized, leading to substantial computational
emands as image size increases. Work in our group is in
rogress to recast the optimization of the PSF in terms of
he more computationally compact pupil function that
haracterizes the optical wavefront at the exit pupil of an
maging system arising from a point source.80,81 In addi-
ion to greater computational efficiency for larger image
ata sets, myopic deconvolution using the pupil function
ould provide explicit insight into the inherent or dy-
amic aberration modes of an optical system (e.g., by
ernike mode decomposition). The ease with which the
upil function can be modified to account for aberrations
lso makes it particularly amenable to use in cases where
he PSF is space variant80,81 (e.g., with depth-dependent
ndex-of-refraction variations in microscopy or
nisoplanatic imaging in astronomy). Moreover, use of the
upil function could help bridge the synthesis of
avefront-sensing data from AO and imaging data in the
econvolution process.52

At least four issues merit further development and ex-
loration. First, the reasons for the success of our auto-
atic hyperparameter estimation scheme. While this

emiempirical scheme is effective in deconvolving a broad
ange of image data, the theoretical foundations for its ro-
ustness deserve future study. The assumption of quasi-
ndependent pixel/voxel prior distributions and the as-
umption that the balance of maximum-likelihood
stimation and object regularization is best achieved by
ormalizing these prior distributions with respect to one
nother should be explored in relation to the partition
unctions of Eq. (6) and other more rigorous marginal
ikelihood approaches. Second, the development of a

ulti-object deconvolution mode more specifically tailored
or time-series data. In deconvolving the microtubule dy-
amics data in subsection 5.B, the temporal indepen-
ence of each object in the time series was assumed.
hile this was helpful in highlighting common, persis-

ent features between time frames, incorporating a cost
unction term or procedure within the deconvolution algo-
ithm to maximize the temporal correlation between ad-
acent time slices may help reinforce object features that
re self-similar and suppress temporally uncorrelated
oise artifacts. Third, as image data sets become larger
nd/or deviations from the assumed noise model become
ore pronounced, the time-to-optimization convergence
ay become seriously compromised. Convergence might

e improved by toggling between a weighted least-
quares (L2-norm) form for the data fidelity term [Eq. (8)]
nd a robust L1-norm form that is computationally sim-
ler and less sensitive to noise model mismatch and data
utliers.82–84 Deconvolution efficiency might also be im-
roved by a reparametrization of the object, for example,
sing wavelets,17 and by incorporating aspects of multi-
esolution/hierarchical scaling into the deconvolution
lgorithm.17,85–87 Finally, it would be interesting to see
ow the myopic capabilities and edge-preserving noise
uppression advantages of AIDA deconvolution could im-
rove the processing of data from such superresolution
maging modalities as multi-frame mosaicing84,88 and
tructured illumination microscopy.89,90
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