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Abstract

Distilling Information from Noisy Data: Examples from Microscopy

by

Erik Forbes Y. Hom

Doctor of Philosophy in Biophysics

University of California, San Francisco

Professor John W. Sedat, Chair

Noise is intrinsic to every experiment. While often viewed as a nuisance, work on the theory

of fluctuations has shown that noise may actually contain useful information. This two-

part thesis explores the duality of noise as information and disinformation, specifically in

applications of fluorescence microscopy.

In Part I, I describe theoretical, experimental, and computational developments in

two-color fluorescence fluctuation microscopy (TCFFM). In TCFFM, intensity fluctuations

of fluorescently-labeled molecules within a small optical volume are analyzed to glean infor-

mation about the dynamics of system components. Focusing on bimolecular reactive systems

of the form (A+B ⇋ C), I present a general TCFFM theory and discuss how the analysis of

fluctuation correlations can be used to measure absolute particle numbers and kinetic rates of

binding. I also discuss the influence of Förester resonance energy transfer, reaction rates and

reactant concentrations, diffusion, and component visibility on correlation analyses. After

describing a two-photon microscope system that I assembled for TCFFM measurements, I
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present experimental proof-of-principle results in a discussion of how TCFFM can be used to

measure the equilibrium constant of two fluorescently-labeled interacting molecules. Com-

plimenting these experimental TCFFM studies, I describe a molecular dynamics/Monte

Carlo-based simulation tool and demonstrate how it can be used to study more complex

systems and experimental conditions that cannot be accounted for with the current theory.

In Part II, I describe work on the Adaptive Image Deconvolution Algorithm (AIDA).

AIDA is a computational tool for processing and de-noising astronomical and microscopy

images. It is based on the proprietary MISTRAL method developed by Mugnier and co-

workers (J. Opt. Soc. Am. A. 21, 1841 (2004)), which has been shown to yield object

reconstructions with excellent edge preservation, noise suppression, and photometric preci-

sion. Using a Bayesian maximum a posteriori framework, I present the theoretical basis for

the AIDA approach. I describe how AIDA was implemented and discuss improvements over

the original MISTRAL program, including a scheme to automatically balance maximum-

likelihood estimation and object regularization and the ability to deconvolve multiple image

frame and three-dimensional data. I present validation results using synthetic data spanning

a broad range of signal-to-noise ratios and image types, and demonstrate that AIDA is effec-

tive for experimental data from adaptive optics-equipped telescope systems and wide-field

microscopy.

Professor John W. Sedat
Dissertation Committee Chair
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2.6 Detector correlation function amplitudes as a function of the dis-
sociation constant for the reaction, A + B ⇌ C. Gxy(0+) amplitudes

computed assuming zero energy transfer (Eq. 7.5). Parameters: C
tot
A =

C
tot
B = Kd = 10−8 M, wr = 0.48 µm, κ = 2.8, ηα

A = ηβ
B = 15 kHz, and zero

background fluorescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Detector correlation function amplitudes are sensitive to energy

transfer. (A) Detector auto-correlation and (B) cross-correlation amplitudes
vs. log Kd as a function of E (Eq. 2.13). (B, right) Expanded view in the
region where cross-correlation amplitudes are comparable to the experimental
amplitude errors assuming data acquisition times of 240 sec or 960 sec (dashed
lines). Parameters: as in Figure 2.6. . . . . . . . . . . . . . . . . . . . . . . . 34



xix

2.8 Subset of bimolecular reaction kinetics accessible to detector cross-
correlation function analysis. Subset of reaction parameters (kf , Kd,

and C
tot
A = C

tot
B ) that lead to measurable differences in Gαβ(τ) (Fαβ ≥ 1.3)

indicated in different tones of gray. Determined from Figure 2.5 using ζ ∼
τdiffkfKd/Γ (Eqs. 7.5 and 2.16) with τdiff ≈ 3.7×10−4 s, for E=0.9, T=960

s, and ηα
A/ηβ

B = 15. Open circles mark the condition, Kd =
(
C

tot
A = C

tot
B

)
·102,

an estimate of the maximum Kd with detectable Gαβ(0+) amplitudes above

statistical noise. Shown for C
tot
A = C

tot
B = 10−8 M (solid line), 10−7 M

(dashed), and 10−6 M (short dashed). . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Schematic of the home-built TCFFM apparatus. . . . . . . . . . . . . 51
3.2 Schematic of the Ti:Sapph laser cavity. A 5W 532 nm Nd:Yag laser is

focused onto a titanium:sapphire crystal, exciting infrared (IR) fluorescence
that is collected by highly reflective IR dichroic mirrors, reflected by cavity
end mirrors, and focused back onto the crystal to get stimulated emission
and lasing. A slit and a pair of prisms is used tune laser wavelength. The
set of cavity mirrors used (high reflecting (HR; 99.99% reflecting) and output
coupler (OC; 90-99% reflecting) is effective over wavelengths of 780-850 nm.
An average laser power of 300 mW is routinely achieved at 820-830 nm. The
cavity length is ∼1.5 m, resulting in a repetition rate of 91 MHz between
femtosecond pulses upon mode-locking (see text for details). . . . . . . . . . . 53

3.3 Photo of Ti:Sapph laser sub-assembly. 532 nm excitation light is focused
through a lens (L) and dichroic mirror (M2) onto a water-cooled titanium-
doped sapphire crystal (C), through a second dichroic mirror (M1) and beam
dumped (B). Infrared fluorescence from the crystal is collected via the two
dichroic mirrors and directed to two cavity mirrors (not shown; see Figs. 3.2
and 3.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Photo of Ti:Sapph laser cavity. Left, view showing the high reflectance
mirror (HR); right, view showing the output coupler mirror (OC). Green
arrows show path of the 532 nm excitation pump beam. Red arrows show the
path of the infrared fluorescence/laser light. (See Figure 3.1) . . . . . . . . . . 54

3.5 Ti:Sapph laser spectrum. Top, spectrum for laser operated in CW mode.
Bottom, spectrum for laser in mode-locked configuration. . . . . . . . . . . . . 56

3.6 TCFFM secondary filter transmission properties. Dichroic spectrum
is shown in yellow, green channel filter in green, and red channel filter in
red. Spectra of Rhodamine Green (RG, green, bold dashed), Texas Red (TR,
red, bold dashed), and Rhodamine Green- and Texas Red-labeled oligonu-
cleotides (green thin dashed and red thin dashed, respectively) are overlaid
for comparison. Samples were prepared in PBS. . . . . . . . . . . . . . . . . . 57
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3.7 TCFFM calibration using Rhodamine 6G. Left, auto-correlation (red
and green) and cross-correlation (yellow and blue) curves and residual plots
(top) for a dilute solution of R6G. Right, expanded view of the correlation
data. Data is an average of three 60 s acquisitions. Non-linear least squares
fitting to a diffusion-only model yields an average number of particles per
focal volume of 15.95± 0.03, a characteristic diffusion time through the focal
volume of 28.9± 0.3 µs, and a volume characterized by a κ = 6.4± 0.3 aspect
ratio. See text for further details. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Spectra for fluorescent proteins overlaid with the TCFFM sec-
ondary filter transmission properties. Cf. Figure 3.6. CFP-FRB is a
Cyan Fluorescent Protein:FKBP-rapamycin-binding-protein chimera. S65T
GFP is the main mutation in the Enhanced Green Fluorescent Protein which
is commercially available. YFP-FKBP is a Yellow Fluorescent Protein:FK506-
binding-protein chimera. dsRed was one of the first isolated Red Fluores-
cent Proteins and exists and a homo-tetramer. tdimer2 is a mutated version
of dsRed which forms convalent dimers of dsRed monomers. mRFP is a
monomeric version of dsRed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 TCFFM auto-correlation curves for fluorescent proteins in Table
3.1. Auto-correlation data (averages of three 60 s acquisitions) were non-
linear least-squares fitted using Eq. 3.1, with N (particle number), τD (char-
acteristic time), and a correlation offset as variables. κ (focal volume aspect
ratio) was constrained to be 6.3 based on focal volume measurments with
R6G (cf. Figure 3.7). Residuals of the fit are shown above the correlation
functions curves. S65T-GFP, CFP-FRB, and YFP-FKBP data were mea-
sured in the green channel; dsRed, tdimer2, and mRFP data were measured
in the red channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Schematic of the fluorescently labeled DNA oligonucleotide strands
studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 TCFFM results for the fluorescently-labeled d(ACTCATAGATC) :
d(GATCTATGAGT) oligos. See Figure 3.10 for strand definitions. Green
and red curves are auto-correlation results from the green channel (RG label)
and red channel (TR label), respectively. Cross-correlation curves (green
channel × red channel and red channel × green channel) are shown in yellow
and cyan; these cross-correlation curves are identical within statistical noise.
The final concentration of strands nominally used was 100 nM. . . . . . . . . 66

3.12 Fluorescence spectra of labeled DNA strands in zero vs. high ionic
strength solutions, demonstrating FRET in the complex. Excitation
spectra were taken by monitoring emission at 650 nm and sweeping over exci-
tation wavelengths. Spectra of equimolar strand 1 (5’-RG-d(ACTCATAGATC))
and strand 2 (5’-TR-d(GATCTATGAGT)) in water (zero ionic strength) or
in high salt (1.5 NaCl, 0.3 M MgCl2) are shown in yellow or cyan, respectively. 67
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3.13 Proposed heterodimeric leucine zipper for in vitro and in vivo TCFFM
studies. Derived from the chicken vitellogenin binding protein (VBP), this
leucine zipper preferentially heterodimerizes with a Kd ∼ 7 nM while homod-
imerization is weak (Kd ∼ 10 − 100 mM).135,143, 144 GFP fusions to these
zippers have been expressed successfully in mammalian cells and appear to
interact minimally to cytoplasmic components. Fluorescent proteins may be
fused to either side of the zipper motifs. . . . . . . . . . . . . . . . . . . . . . 73

4.1 Simulation method. (A) Simulations were done in three steps: computa-
tion of Brownian dynamics trajectories using GROMACS software; computa-
tion of fluorescence time courses using custom software; and computation of
correlation functions and photon count histograms from photon arrival times.
(B) Brownian dynamics trajectories were generated to give coordinates of a
collection of molecules in a periodic box. The number of molecules within a
sub-volume of the box at each time, NV , was computed. A fraction of these
molecules, Nex, were excited, and a fraction of the excited molecules emit-
ted photons, generating a fluorescence time course, F(t) and photon count
histogram, P(k). (C) key diagramming the different time step intervals used
in the simulation and data analysis. (D) key diagraming the relationship be-
tween the excitation time t′ and query time, in units of the fluorescence query
time interval, δt. (E) Photon arrival time (PAT) format. Given a user defined
time bin, ∆t, fluorescence photon counts are stored as a data pair: the first
element is the number of empty bins, b, separating bins containing photons,
and the second element is the number of photons, k, within the latter bin.
Shown in the figure is the entry (3,1). The dashed lines demonstrate that
b = 3 and the single photon at the end of the dashed lines indicates k = 1,
forming the entry (3,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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4.2 Validation of simulation method. The Brownian dynamics simulation of
particle diffusion was run for 1 s using a 200 ns time step for 1000 molecules
with diffusion coefficient 300 µm2/s in a 10 × 10 × 10 µm box (average con-
centration 1 particle/µm3; 1.7 nM). (A) Mean squared displacement (MSD)
plot of particle positions. The fitted slope gives a diffusion coefficient of 298
µm2/s. (B) Representative plot of the number of particles, NV , in a 1×1×3
µm cubic observation volume. (C) Corresponding plot for detected photons.
Molecules were excited with a Gaussian excitation profile of wxy = 0.354
µm, wz = 1.061 µm (κ = 3), and specific brightness 17 kHz/molecule. (D)
Autocorrelation function, G(τ), computed from F(t) from four separate sim-
ulations. The solid line is fitted G(τ) for a simple diffusion (Eq. 4.9) (see text
for fitted parameters), with fractional deviation (∆) shown in the lower panel.
(E) Photon count histogram P (k;∆T ), generated from the fluorescence trace
with ∆T = 20 µs. Data were fitted with the P (k;∆T ) for Poisson distribu-
tion (dotted curve) and super-Poissonian model (theory; solid curve).32 (F)
Effect of excitation profile on G(τ). Trajectories were generated as above.
The fluorescence module was modified to produce cubic, spherical, and sym-
metric Gaussian (wx = wy = wz) excitation profiles. Simulated data were
fitted to Eq. 4.9, and the fractional deviation between fit and simulation (∆)
plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Simulations of intersystem crossing. (A) Kinetic scheme for intersys-
tem crossing. (B) Simulated G(τ). Brownian dynamics trajectories (1 s)
generated for 192 spherical molecules of diffusion coefficient 107 µm2/s in a
4 × 4 × 12 µm box (1 molecule/µm3; 1.7 nM) with step time 50 ns (total of
107 steps), with k12 = k21 = 2.0 × 107 s-1, τis = 0.3 µs-1, and τ t= 5 µs. F(t)
generated using a Gaussian excitation beam (wxy = 0.354 µm and wz = 1.061
µm) with indicated specific brightness (in kHz/molecule). The smooth curves
(which follow the simulated data very closely) are fits of Eq. 4.10 (see text
for fitted parameters). (C) Effect of intersystem crossing on P (k;∆T ) with
∆T = 20 µs. Data were simulated as in (B) with specific brightness 370
kHz/molecule (in the absence of intersystem crossing). Solid lines are fits
of the super-Poissonian model with parameters: control (observed simula-
tion values in parentheses): N = 2.06 (2.16), ǫ = 5.07 (4.86); triplet state:
N = 2.01 (2.62), ǫ = 3.41 (2.62). . . . . . . . . . . . . . . . . . . . . . . . . . 92
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4.4 Simulations of photobleaching. (A) Kinetic scheme for photobleaching.
(B) Effect of photobleaching on G(τ) Brownian dynamics trajectories gener-
ated as in Figure 2. F(t) was generated using a Gaussian excitation beam
(wxy = 0.354 µm, wz = 1.061 µm) with indicated photobleach time constants.
Specific brightness was 17 kHz/molecule (in the absence of photobleaching).
Data were simulated at constant excitation light intensity. The solid lines
are fits of Eq. 4.9 (see text for values of fitted parameters) with fractional
deviation (∆) at τbl = 1 µs shown in the lower panel. (C) Fit of Eq. 4.11
with parameters: G(0+) = 0.40, τD = 0.34 ms, B=0.86, and τbl = 0.53 ms
with fractional deviation (∆). (D) Effect of photobleaching on P (k;∆T ) Data
were binned with ∆T = 20 µs. The solid lines are fits to the super-Poissonian
model (with observed simulation values in parentheses): control: N = 2.16
(2.0862), ǫ = 0.9463 (0.98); 3 µs bleach: N = 1.30 (1.19), ǫ = 0.70 (0.76); 1
µs bleach: N = 0.99 (0.88), ǫ = 0.45 (0.51). . . . . . . . . . . . . . . . . . . . 95

4.5 Effect of excitation light intensity on G(τ) for calcein. The solid lines
are fits of Eq. 4.9 to the data (starting at 10 µs). Fitted parameters: G(0+)=
0.082, 0.11, 0.23, 0.31 and τD = 0.60, 0.63, 0.43, 0.22 ms for relative light
intensities of 1, ×2, ×6, and ×20, respectively. . . . . . . . . . . . . . . . . . . 97

4.6 Simulations of two-color FCS. Brownian dynamics trajectories (1 s) gen-
erated for 192 spherical particles of type A and 192 spherical particles of type
B (each with diffusion coefficient 273 µm2/s) in a 4 × 4 × 12 µm box using
a step time of 100 ns for 107 steps. F(t) generated using a Gaussian exci-
tation beam (wxy = 0.354 µm, wz = 1.061 µm) and specific brightness 17
kHz/molecule. (A) Effect of dimer formation on the cross-correlation func-
tion. Indicated fractions of A and B were constrained as 50 nm rigid-rod A:B
dimers. Solid lines are a fit of Eq. 4.9. Fitted parameters: G(0+)= 0.055,
0.112, 0.165 and τD = 0.97, 0.97, 0.83 ms for fraction bound 0.33, 0.66, 1.00,
respectively. For unbound A and B, G(0+) = 0.163 and τD = 0.42 ms (data
not shown). (B) Dependence of G(0+) on fraction bound. The autocorre-
lation of the A molecules, GAA(0+), is shown. GBB(0+) (not shown) was
identical to GAA(0+)). (C) Effect of beam misalignment on cross-correlation
function. A and B were constrained as 50 nm rigid-rod A:B dimers. Illumi-
nation and detection profiles for A and B were displaced in the x-direction
by indicated distances. The solid lines represent a fit of Eq. 4.9 to the data.
Fitted parameters: G(0+) = 0.158, 0.102, 0.026 and τD = 1.63, 1.38, 5.96
µs for offset ∆x/σ = 0.0, 0.7, and 2.8, respectively. ∆x is the offset of the
centers of the Gaussian excitation profiles and σ is the standard deviation in
the x -direction. Inset shows lower curve on expanded y-scale. (D) Effect of
misalignment of beams on auto and cross-correlation amplitudes. . . . . . . . 98
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4.7 Simulations of binding effects on FFM. Brownian dynamics trajectories
(1 s) generated for 192 spherical particles in a 4 × 4 × 12 µm box using a
step time of 100 ns for 107 steps. F(t) were generated using a Gaussian
excitation beam (wxy = 0.354 µm, wz = 1.061 µm) and specific brightness
of 17 kHz/molecule. Trajectories were modified by fixing the positions of
particles for a given time, as described in the text, characterized by association
time, τon, and dissociation time, τoff . To simulate slow binding, particles
selected at random were held fixed throughout the course of the simulation,
and no additional particles were allowed to bind. The fraction of particles held
fixed at τoff/(τon + τoff ) = 0.5. (A) Effect of binding on G(τ) with equally
fluorescent bound and free particles. Solid lines are a fit of Eq. 4.5, with fitted
parameters: G(0+)= 0.170, 0.166, 0.136, 0.085 and τD = 0.45, 0.93, 1.52, 0.52
ms for control, τon = 50 µs, τon = 5000 µs, and slow binding, respectively.
(B) Same as in (A), except that bound particles were non-fluorescent. The
solid curves are a fit of Eq. 4.9 with: G(0+) = 0.170, 0.356 and τD = 0.45,
0.41 ms for control and slow binding, respectively. . . . . . . . . . . . . . . . . 100

4.8 Simulations of anomalous diffusion and molecular crowding. (A)
MSD plots for simulated super- and sub-diffusion. Brownian dynamics trajec-
tories were generated for 0.73 µm particles at a concentration of 2 particles/µm3

for 100 ms using a 200 ns time step (average of 50 trajectories). Super-
diffusion was simulated by a constant velocity (v) in the x -direction. Sub-
diffusion was simulated by confining the particle to a rectangular box of indi-
cated dimensions. (B) Super-diffusion. F(t) were generated with a Gaussian
excitation profile of wxy = 0.354 µm, wz = 1.061 µm (κ = 3) and specific
brightness of 17 kHz/molecule. G(τ) as a function of velocity shown along
with deviations (∆) between fit of Eq. 4.9 (dashed line) or 11 (solid line)
and simulation. Fitted parameters are given in 4.1 below. (C) Sub-diffusion.
F(t) and fits generated as in (B). Infinite box size refers to a 3 × 3 × 9 µm
box with periodic boundary conditions. (D) Non-bonding potentials used in
crowding simulations. The radius of the particles was defined operationally
as the distance from the center of the particle at which the potential dropped
to kT. (E) Effect of crowding on G(τ) Brownian dynamics trajectories (100
ms) were generated for 81 spherical diffusing particles (diffusion coefficient
95 µm2/s, effective radius 0.45 nm) and 420 large crowder particles (diffusion
coefficient 0.67 µm2/s, effective radius 300 nm) in a 3 × 3 × 9 µm box for
a volume exclusion of 59%. The solid lines represent a fit of Eq. 4.9 to the
data. Fitted parameters: G(0+) = 0.161, 0.164 and τD= 0.80, 2.01 ms for
volume fraction 0 and 59%, respectively. . . . . . . . . . . . . . . . . . . . . . 102
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7.1 AIDA optimization protocol. (A) Set-up and variable initialization stage.
Equation numbers for variables are shown in curly brackets. Mo and Mh are
the number of objects and PSFs to be estimated, respectively. (B) Deconvolu-
tion scheme. The subscript j indexes the “optimization round,” which consists
of two partial conjugate gradient (PCG) estimation loops (each indicated by
a dashed-box): one for the object(s), ô, followed by one for the PSF(s), ĥ.
The deconvolution is stopped after a max_optimization_count number of se-
quential PCG estimation loops have converged (see below). (C) Schematic of
the PCG estimation loop used to estimate the object(s) or PSF(s) (indicated
generically by the variable (x̂j)) for the j th optimization round. ∆p is an Mo-
or Mh-length array of root-mean-square-deviations between sequential PCG
iterations used to monitor convergence progress. Minimization of each x̂j in
x̂j is continued until ∆p falls below some PCG_tolerance for a total of con-
vergence_count times or until a rising_rmsd_count number of “uphill” moves
is registered (default = 3 for both). Each “PCG iteration” entails a steepest
descent minimization step followed by up to ω − 1 conjugate gradient (CG)
steps for the set of unconverged object or PSF estimates. When the fraction
of object(s) or PSF(s) that have converged is > ζ, the PCG estimation is
stopped and convergence for that PCG estimation loop is noted. . . . . . . . 150

7.2 Subset of reference objects used to test AIDA and establish its au-
tomatic hyperparameter estimation scheme. Each object (with max in-
tensity set to 100, 1000, or 10000) was blurred with a Gaussian PSF (FWHM=4
pixels), had intensity-based Poisson noise and Gaussian detector noise added
according to Eq. (8.1) to yield a series of images with SNR=-10, -3, 0, 7, 10,
17, 20, or 27 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1 Deconvolution test results using automatic hyperparameter estima-
tion. (A) Left, original 256 × 256 pixel “brain” object with intensities from
0-1000 (o); right, convolved noise-free image (g) with Gaussian PSF (h) in-
set (FWHM=4 pixels). (B) Deconvolution series for image SNR of -10, 10,
and 20 dB; left, convolved image with Poisson and Gaussian noise (i); right,
corresponding deconvolution result (ô). . . . . . . . . . . . . . . . . . . . . . . 163

8.2 Automatic hyperparameter estimation is nearly optimal. Deconvo-
lution results for the SNR=100 brain image from Figure 8.1, over a grid of
λo and θr values that are 20× larger or smaller than those estimated auto-
matically. Center : deconvolution result using the automatically estimated
hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.3 Myopic deconvolution results for AO-corrected images of Io, a vol-
canically active moon of Jupiter. The PSF of the system was estimated
using images of a star located near the target with the same visible magni-
tude. PSF variability (characterized by v in Eq. (6.13)) depends mainly on
the brightness of the target, the quality of the atmospheric turbulence, and
the wavelength range of observations. We estimated that FWHM variability
of the PSFs from 10 nights of observation to be <6% in the K band.167 . . . . 168
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8.4 Reconstructed appearance of Io on January 26, 2003 at 7:38 UT
observed from Earth. This image is based on Galileo/SSI and Voyager
composite maps at a resolution of 20 km (courtesy of P. Descamps, Institute
de Mécanique Céleste et des Calculs d’Éphémérides). Note that albedo fea-
tures (e.g., calderas/craters) can also be seen on the deconvolve imaged (cf.
Figure 8.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.5 Myopic deconvolution results for AO-corrected images of Titan,
the largest moon of Saturn. (A) Basic processed image of Titan taken on
January 14, 2005 (1 day after the Cassini-Huygens probe landing) using the
ground-based Keck AO system and a narrow band filter centered at 2.06 µm to
probe surface albedo features.50 (B) Keck AO image of Titan after myopic de-
convolution with AIDA. (C) Mosaic image of Titan based on 1.3 km resolution
data taken in the infrared with the Image Science Subsystem (ISS) instrument
aboard the Cassini spacecraft (http://photojournal.jpl.nasa.gov/catalog/PIA06185).
(D) False-color visible and infrared mosaic image of Titan taken by the ISS
(http://photojournal.jpl.nasa.gov/catalog/PIA07965). Atmospheric features
are shown in red and surface features in green and blue. Although the orienta-
tion of the Keck and ISS observations are slightly different, similar structures
are seen on the deconvolved image as in the ISS image, validating the effec-
tiveness of AIDA. Two ISS images were chosen to illustrate the variability of
the satellite appearance due to the presence of haze and clouds. Arrows serve
as reference markers to a common feature. . . . . . . . . . . . . . . . . . . . . 171

8.6 Mono-frame and multi-frame deconvolution of simulated retinal im-
ages. (A) An artificial 256×256 pixel retina object was created mimicking the
characteristics of the data presented in Roorda et al.217 (see text). (B) A rep-
resentative degraded image (1 of 6) obtained by convolving with a Gaussian
PSF (randomly generated with FWHMavg=5 pixels and a FWHM variance of
20%) and adding Poisson and Gaussian noise. (C) Mono-frame deconvolution
of the shift-and-added combination of 6 image frames. Contrast on the cones
is improved by a factor of ∼ 3. D : multi-PSF image deconvolution yields the
best photometric results (see 8.1). . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.7 Uranus observed with the Keck AO system and NIRC-2 camera on
October 3, 2003. (A) Multi-PSF deconvolution of 5 AO-corrected images
of Uranus. (B) Combined “shift-and-added” image of 5 AO-corrected obser-
vations (30 s exposure for each). The gain in contrast after deconvolution
is estimated to be ∼ 2, so that cloud features (arrows) can be more easily
identified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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8.8 Close-up of the ringlets of Uranus. (A) Basic processed AO image. (B)
Multi-PSF deconvolution using 6 image frames. (C) Mono-frame deconvo-
lution of a shift-and-added image. This ring system is extremely faint and
close to the disk of the planet; intensities of the ringlets are comparable to the
intensity of the glare of Uranus as shown in the basic processed image (A).
Deconvolution using AIDA significantly improves the contrast even on these
faint features. The result is slightly better using multi-frame vs. mono-frame
deconvolution. Arrows indicate a ghost artifact present in the mono-frame
deconvolution result which is reduced in the multi-frame deconvolution result. 177

8.9 Multi-object deconvolution of time-series images of a S. pombe (fis-
sion yeast) cell expressing α-tubulin-GFP. Images were acquired using
the OMX microscope system (data courtesy of Satoru Uzawa, Sedat Lab,
UCSF). Each time-series slice was generated by axially sweeping the micro-
scope focus over a 4 µm depth within 50 ms; an image slice was acquired
every second for about 4 mins. (A) A single time-series slice of the original
image data after basic processing (bad pixel removal and flat-fielding), mono-
frame deconvolution, and multi-object deconvolution (image pixel size = 80
nm). (B) 2D maximum intensity projections (generated along the y-axis of
the slice) plotted as a function of time (kymograph). . . . . . . . . . . . . . . 179

8.10 2D volume projections for myopically deconvolved 3D frog image
stacks with images SNRs of 1 and 100. (A) xy-projection. (B) yz -
projection. Automatic hyperparameter estimates were used along with an
axial resolution gradient factor of ζ = 3 (see Sec. 7.3). . . . . . . . . . . . . . 182

8.11 Representative 2D slices and line profiles through the original 3D
frog object (o), 20 dB SNR image (i), and deconvolution result (ô). . 183

8.12 Chromosomes of mitotically dividing cells (cell cycle 10, anaphase)
within a D. melanogaster (fruit fly) embryo. Chromosomes were stained
with the fluorescent dye, DAPI, and embryos fixed in 10% formaldehyde fix-
ation buffer, mounted in glycerol, and imaged using the OMX microscope
system with a 100X oil-immersion objective (data courtesy of Yuri Strukov,
Sedat Lab, UCSF). (A) Maximum intensity xy-projections of 2 subregions of
an acquired 3D image stack after basic processing (removal of bad-pixels and
flat-fielding) and myopic deconvolution result using ζ = 3.2 and λo = λ̂o/10
(see text). Insets (see arrows) highlight corresponding areas of improved con-
trast after AIDA deconvolution. (B) xz -projections for the full data stack
of (A). Areas of improved contrast are again highlighted by arrows. More
dramatic restoration is observed in the axial (z -) direction, although some
residual blurring remains, noticeably with increasing z. Image pixel size was
80 nm in the lateral (xy-) direction and 150 nm in the axial direction. Bar
length = 4 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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Chapter 1

Preface

“We must understand variation” –W. Edwards Deming

“Noise” is intrinsic to every measurement and must be properly dealt with in order to distill

information from experimental data. In principal, an experimental system is defined by

a vast number of fundamental “primitive” degrees of freedom (e.g., particle positions and

momenta).137 In practice however, all these degrees of freedom are impossible to track for

at least two reasons. First, no mode of measurement is comprehensive: measurements are

fundamentally limited in scope and report only a few observables at given time. Second,

measured quantities rarely correspond to specific primitive degrees of freedom but instead

reflect aggregates or clusters of these (e.g., the measured pressure of a gas arises from the

forces exerted by a collection of colliding gas molecules).237 This practical reduction in the

number of descriptive variables may be due to inherent limitations in the nature of the

measurement and/or an experimental design that provides only a contracted macroscopic

description of the system.1 Ironically, a contracted description is necessary for experimental

1Measurement errors due either to faulty instrumentation or human error can be considered to result
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measurements to make sense, even though such a description is statistically imprecise and

inaccurate due to incompleteness.207

Statistical imprecision and inaccuracy are the basis for two facets of noise in data.

Statistical imprecision implies that no two systems, while characterized by the same con-

tracted description, will be exactly the same. Differences or variations in a measured ob-

servable constitute one facet of noise: noise as random fluctuations. Factors not completely

accounted for by a contracted description may affect the measurement of an observed quan-

tity of interest in an unexpected manner. The second facet of noise: noise as unwanted

peripheral contributions, result from factors external to the contracted system description.

In the recent literature, these two facets are often called intrinsic noise and extrinsic noise,

respectively.2,190

This two-part thesis explores each of these facets of noise in applications of fluores-

cence microscopy. In Part I, I consider intrinsic fluctuations and show that they can be a rich

source of system information. In Part II, I deal with noise as disinformation that obscures

a signal of interest and describe an inversion method to effectively filter out such noise from

data in the context of image processing. In both cases, a careful inventory and evaluation

of factors affecting the measured quantity is critical. While the principles I discuss here are

relevant to any methodological approach, the focus of my work has been on fluorescence mi-

croscopic methods because they are most relevant to biology.155,271 The degree of specificity,

selectivity, and sensitivity that is possible with fluorescence methods is simply unmatched

by other biophysical methods74,85, 145

from a \emph{practically}-forced contracted description of the system; these errors could be accounted for
if the degrees of freedom describing what “went wrong” with the instrument or person were known.
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Part I of this thesis describes my developments in the technique of two-color fluo-

rescence fluctuation microscopy (TCFFM) and methods for exploiting noise as a source of

information. The conceptual strategy for TCFFM was proposed by Magde and co-workers in

1972 as fluorescence correlation spectroscopy (FCS).159 At the time it was developed, the full

potential of FCS was not be realized because of technological limitations. However, recent

advances in photon detector technology, microscope optics, and data acquisition hardware

have led to a renewed interest in FCS as a realistic tool to measure not only diffusion and

equilibrium constants, but also binding kinetics of interacting molecules.64

In an FCS experiment, the fluorescence emitted from fluorophores in a sample at

steady-state is monitored within a small, optically defined open volume element as a func-

tion of time. By “correlating” or analyzing the fluctuations of the fluorescence signal, it is

possible to derive a spectrum of characteristic relaxation times describing temporally-limited

processes inherent to the system, including diffusion, chemical reaction, and photophysical

transformations. TCFFM extends the FCS method to the analysis of two fluorescence signals

of different colors.

In Chapter 2, I present a general theoretical framework for TCFFM, focused mainly

on the analysis of fluctuation correlation functions and bimolecular reactive systems. I

discuss the consequences of chemical reaction kinetics, Förster resonance energy transfer,

and cross-talk detection artifacts, and I assess the practical limitations of using TCFFM

to study biochemical reactions. In Chapter 3, I describe a microscope system assembled to

perform TCFFM experiments and present proof-of-principle results showing how TCFFM

can be used to measure the equilibrium constant of two fluorescently-labeled interacting
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molecules. In Chapter 4, I describe a combined molecular dynamics/Monte Carlo-based

TCFFM simulation tool that is intended to compliment experimental TCFFM studies. I

show how such simulations can be useful for studying complex systems and experimental

conditions for which no theory exists. In Chapter 5, I highlight some ideas that merit

further development; these include new analysis methods, implementation improvements,

and systems apt for experimental study with TCFFM.

Part II of this thesis describes the Adaptive Image Deconvolution Algorithm (AIDA),

a computational tool for processing noisy image data. Here, noise is treated more classically

as a signal-obscuring contribution from extraneous sources. The image of an object observed

through an optical microscope is fundamentally limited by the information transfer capacity

or “transfer function” of the microscope. For example, object features below the resolution

limit of the microscope may not be retained in the observed image. This image is further

contaminated by noise from measurement detectors and the statistical photo-detection pro-

cess. The goal of deconvolution image processing is to recover the “truest” representation of

the object from a noisy image or set of images. The combination of information loss and the

presence of noise makes this inversion problem notoriusly difficult, requiring sophisticated

theoretical and computational strategies to be solved.

AIDA is based on the MISTRAL method originally developed for astronomical im-

age processing.177 MISTRAL has garnered attention from the astronomy community for

its ability to generate object reconstructions with excellent noise suppression, fine-feature

preservation, and photometric accuracy. Like MISTRAL, AIDA allows the transfer function

of the imaging system, which may not be fully known, to adapt during the object recon-
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struction process. This aspect is central to the success of AIDA in cases where the estimate

of the transfer function is inaccurate. AIDA was built as an extension of the MISTRAL

method, specifically to process microscope imaging data.

In Chapter 6, I present the basic AIDA approach within a Bayesian, maximum a

posteriori framework. In Chapter 7, I describe how AIDA was developed and extended from

the MISTRAL method. Features that distinguish AIDA from MISTRAL include: (1) an

automatic scheme to suppress noise while preserving sharp features in the reconstruction

of the imaged object, (2) the ability to process multiple image frame data simultaneously

assuming a common object or common microscope transfer function, and (3) the ability to

process three-dimensional image data stacks. In Chapter 8, I demonstrate the effectiveness

of AIDA in processing synthetic and experimental image datasets, including multiple image

frame datasets and three-dimensional image data stacks. In Chapter 9, I provide a survey

of possible algorithmic improvements and applications of the AIDA method.

Appendix A is a reprint of a paper describing work that I began in the context of my

pre-doctoral fellowship proposal. The goal of this proposal was to quantify the associations

between unfolded proteins and the chaperone machinery within the endoplasmic reticulum

(ER). This paper served to establish the use of diffusion coefficients from fluorescence re-

covery after photobleaching (FRAP) to indicate the bound-state of proteins in the ER. It

soon became apparent to me, however, that FRAP and diffusion measurements alone were

too insensitive to detect changes in protein binding. This started me on a pilgrimage of

thought, from the modern though highly perturbative method of FRAP, to the moderately

perturbative method of continuous microphotolysis,193 and ultimately to non-perturbative
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fluctuation-based methods, of which fluorescence correlation spectroscopy is an archetype

and motivation for the first part of this thesis.
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Part I

Developments in Two-Color

Fluorescence Fluctuation Microscopy
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Chapter 2

Theoretical Foundations

A version of this chapter was published by Erik F. Y. Hom and Alan S. Verkman as: “Anal-

ysis of Coupled Bimolecular Reaction Kinetics and Diffusion by Two-Color Fluorescence

Correlation Spectroscopy: Enhanced Resolution of Kinetics by Resonance Energy Trans-

fer,” Biophysical Journal 83(1):533-546 (2002).
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2.1 Abstract

In two-color fluorescence correlation spectroscopy (TCFCS), the fluorescence inten-

sities of two fluorescently-labeled species are cross-correlated over time and can be used

to identify static and dynamic interactions. Generally, fluorophore labels are chosen that

do not undergo Förster resonance energy transfer (FRET). Here, a general TCFCS theory

is presented that accounts for the possibility of FRET between reactants in the reversible

bimolecular reaction, A + B
kaGGGGGGBFGGGGGG
kb

C, where kf and kb are forward and reverse rate con-

stants, respectively (dissociation constant Kd = kb/kf ). Using this theory, I systematically

investigated the influence on the correlation function of FRET, reaction rates, reactant con-

centrations, diffusion, and component visibility. For reactants of comparable size and an

energy transfer efficiency of ∼90%, experimentally measurable cross-correlation functions

should be sensitive to reaction kinetics for Kd > 10−8 M and kf & 107 M-1s-1. Measured

auto-correlation functions corresponding to donor and acceptor labels are generally less sen-

sitive to reaction kinetics, although for the acceptor, this sensitivity increases as the visibility

of the donor increases relative to the acceptor. In the absence of FRET or a significant hy-

drodynamic difference between reactant species, there is little effect of reaction kinetics on

the shape of auto- and cross-correlation functions. My results suggest that a subset of bi-

ologically relevant association-dissociation kinetics can be measured by TCFCS and that

FRET can be advantageous in enhancing these effects.
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2.2 Introduction

In fluorescence correlation spectroscopy (FCS), the spontaneous fluorescence fluc-

tuations arising from a small probe volume within a fluorescent sample are temporally

correlated to obtain information about the molecular processes that cause these fluctua-

tions.65,159, 160, 251 The shape of the correlation function is dependent upon the dynam-

ics of the fluorescent particles in the probe volume, whereas the amplitude of the auto-

correlation function at zero time is inversely proportional to the average number of par-

ticles.65,161, 251, 253 Hydrodynamic properties, particle concentration, fluorescence photo-

physics, conformational kinetics, aggregation state, and binding thermodynamics have been

measured using FCS.21,33, 99, 102, 147, 149, 187, 214, 231, 252, 264, 268 The kinetics of slow intermolec-

ular reactions138,173, 208, 226, 235 and to a lesser extent, the kinetics of fast reversible inter-

molecular reactions,20,65, 99, 116, 147 have also been measured using FCS.

The rate constants of very fast reactions can be deduced directly from the time-

dependent decay of the correlation function. For slow reactions, rate constants are typically

estimated indirectly by measuring reactant:product ratios as a function of time following a

sudden change in reactant concentration (or a reaction initiation event) under pseudo-first

order conditions. This latter approach is unlikely to be useful, however, when the time

scale for kinetic relaxation is comparable to that needed to make numerous FCS measure-

ments of reasonable quality (each typically >30 s). Moreover, a macroscopic concentration

perturbation is required which goes counter to the conceptual motivations of FCS as a

non-perturbative method.

For FCS to be useful in measuring reaction kinetics, a sufficient number of reaction
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αl a s e r d i c h r o i c 1b e a m � e x p a n d e r s a m p l el e n si r i s d i c h r o i c 2f i l t e r s βc r o s s � c o r r e l a t o r
Figure 2.1: TCFCM measurement scheme. Schematic of a double-detector FCS appa-
ratus in which emitted fluorescence is spectrally separated by a dichroic mirror and focused
onto fiber-optic light guides coupled to detectors α and β.

turnover events must be observed before reaction components diffuse out of the probe vol-

ume. What constitutes a “sufficient number” is not clear. If the time scales for reaction

and diffusion are very different, approximations have been made that either incorporate

the influence of kinetics at early times when they are fast, or neglect the effects of kinetics

on the correlation curve-shape when they are slow.266 The precise conditions under which

these approximations are appropriate are likewise not clear. Consequently, there is little in

the literature to document the usefulness of FCS for studying reactions with moderate time

kinetics.

In this paper, I assess the utility of FCS for studying bimolecular reactions. Based on

the work of Schwille and co-workers,103,138, 234 a general FCS theory is presented that applies

to the experimental situation in which two detectors are used to monitor the fluorescence

fluctuations arising from two fluorescently labeled, interacting species (Figure 2.1).

The influence of key parameters on experimentally detected auto- and cross-correlation
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curves are examined, including the reaction rate and reactant concentrations, and the diffu-

sion and visibility of reaction components. Importantly, the two-color FCS (TCFCS) theory

presented here includes the possibility of resonance energy transfer in the bound complex,

which is shown to be of considerable value in enhancing the effects of reaction kinetics on

experimentally measurable correlation functions. I will use the term two-color fluorescence

fluctuation microscopy (TCFFM) instead in this thesis to emphasize the fact that FCS is

only one example of a broader set of methods focussed on the analysis of fluctuations and

that fluorescence microscope and imaging optics are the tools used to monitor fluctuations.

2.3 Theory

2.3.1 The double-detector correlation function

Consider an open system of particles containing m differently labeled fluorescent

species. The goal is to extract information about the diffusion and reaction dynamics of

these particles by temporally correlating the fluorescence fluctuations observed within a

small probe volume, V. The experimentally accessible correlation function of the fluorescence

fluctuations measured using two detector channels, x and y, can be defined as:

Gxy(τ) ,
〈δF x(t) · δF y(t + τ)〉

〈F x〉 · 〈F y〉 (2.1)

where τ is the correlation time (the angular brackets denote an average over a time T ≫ τ),

F x(t) is the total fluorescence signal registered in channel x at a time t, and the fluorescence

fluctuation about the mean is δF x(t) = 〈F x〉−F x(t). Gxy(τ) is the double-detector correla-

tion function. If an uncorrelated background signal, bx(t), is present, the total fluorescence
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signal can be written as F x(t) = fx(t) + bx(t), where fx(t) is the fluorescence signal arising

from all m fluorescent species at time t (fx(t) =
∑m

i fx
i (t)) and bx(t) accounts for any

uncorrelated background signal. It follows that:

Gxy(τ) =

(
1 +

bx

fx

)−1(
1 +

by

fy

)−1

·



〈(

m∑

i

δfx
i (t)

)
·




m∑

j

δf y
j (t + τ)



〉

/
(
fx · fy

)



︸ ︷︷ ︸ ︸ ︷︷ ︸

= ℵx · ℵy · gxy(τ) (2.2)

where gxy(τ) is the fluctuation correlation function for the m-particle system of interest, and

ℵy and ℵy are correction factors (≤1) for the uncorrelated background. In practice, an offset

term is sometimes added to Eq. 2.2 to account for any accidental correlation background

due to sample contamination or systematic error;231,269 I will assume that this offset is

negligible.

The time-dependent fluorescence fluctuation for the ithspecies monitored by detector

channel x can be expressed as:

δfx
i (t) = ηx

i (λi)

∫
W (r) · δCi(r, t) dr; ηx

i (λi) , W0 · εi(λi) ·Qi · gx (2.3)

where δCi(r, t) is the time-dependent fluctuation in the molar concentration of species i

at spatial position r, and W (r) is a dimensionless function characterizing the illumination

profile of the effective volume element normalized by W0, the excitation amplitude of the

illumination beam at the center of focus (W (0)=1).170 λi is the wavelength of the illumi-

nation beam used to excite species i, εi and Qi are the intensity-dependent absorptivity

and fluorescence quantum yield, and gx is the collection efficiency of detector channel x.

ηx
i (λi) is the x-detector visibility (or “molecular brightness”) defined as the number of pho-
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tons detected in channel x per second per molecule of i .32,180 The λi-dependence of ηx
i will

hereafter be implicit.

Gxy(τ) can then be expressed in terms of diffusion/reaction kinetic parameters using

Eq. (2.3) and by solving for δCi according to the set of coupled reaction-diffusion equations

at equilibrium: ∂δC(r, τ)/∂τ =
(
D · ∇2 + R

)
· δC(r, τ), where δC is the vector of concen-

tration fluctuations for the m species, D is the vector of diffusion constants (assuming no

hydrodynamic coupling between components), and R is the linearized matrix of rate con-

stants and equilibrium concentrations (Ci) that describe the reaction mechanism.14,65, 251

By spatial Fourier transform:

∂δC̃(q, τ)

∂τ
= M · δC̃(q, τ) (2.4)

where M ,
(
R−D · q2 · I

)
and I is the identity matrix, which can be solved by standard

matrix methods65 (see Section 2.7). Using solutions to Eq. 2.4, Gxy(τ) can be written as

an integral over Fourier spatial frequencies (q) and ultimately expressed as:

Gxy(τ) = ℵxℵy ·
m∑

i

m∑

j

dxy
ij · hij(τ) (2.5)

where dxy
ij is the detectability weight and hij(τ) is the component correlation function for

species i and j. dxy
ij can be expressed as:

dxy
ij ,

(
1

N tot

)
 rx

i ry
j
√

χiχj

(
∑m

i rx
i χi)

(∑m
j ry

j χj

)


 (2.6)

where N tot is the average total number of particles in the observation volume, χi is the mole

fraction of the ith species, and rx
i is the x -detector visibility of species i normalized by the

x -visibility of the brightest singly-labeled species in the sample. The component correlation
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function, hij(τ), is defined as:

hij(τ) = hji(τ) ,

∫
Zij(q, τ) · Ω(q) dq (2.7)

where the function Zij(q, τ) characterizes how spontaneous particle number fluctuations are

spatio-temporally dissipated (see Section 2.7) and Ω(q) is a geometric weighting factor that is

dependent upon characteristics of the observation volume having units of reciprocal volume.

For an n-photon excited 3-D Gaussian-ellipsoidal (3DG) volume, V = (π/n)3/2w2
rwz and

Ω(q) =
(
w2

rwz/(4nπ)3/2
)
exp

(
−w2

r(q
2
x + q2

y)/4n
)
exp

(
−w2

zq
2
z/4n

)
, where wr and wz are the

radial and axial radii of the volume element, respectively. In general, Eq. 2.7 cannot be

integrated analytically and component correlation functions, hij(τ), must be determined by

numerical integration.

It is assumed that the particles under study are chemically ideal. Practically, this

means that if the particles interact, they do so without any memory effects at a time τ = 0+

where τTS ≪ 0+ ≪ τreac, τTS being the average lifetime of the reaction transition state which

separates experimentally distinguishable chemical species, and τreac, the average lifetime

of the particles before they react.29 With this assumption, hij(0+) = δij ,65 and only the

component auto-correlation functions contribute to the initial detector correlation amplitude,

Gxy(0+). As needed below, it is convenient to write the detector correlation function as a

product of this amplitude and a shape function, Hxy(τ):

Gxy(τ) = Gxy(0+) ·Hxy(τ) (2.8)

where Hxy(0+) = 1 and Hxy(∞) = 0.
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2.3.2 Application to reversible bimolecular reactions

The above formalism is applicable to an arbitrary m-particle system. My analysis

will focus exclusively on reversible bimolecular reactions of the form, A+B
kaGGGGGGBFGGGGGG
kb

C, where

kf and kb are the forward and backward rate constants, respectively, and Kd = kb/kf is

the equilibrium dissociation constant. I assume that reactant species A and B are labeled

with fluorophores that are distinct in their emission spectra upon exciting at wavelengths

λA and λB, and monitored by detector channels α and β respectively (Figure 2.1). Using

Eqs. 2.5 and 2.6, the double-detector correlation functions, Gxy(τ), can be expressed as

a linear combination of component correlation functions, hij(τ). Assuming there is zero

“bleed-through” fluorescence registered in detector channels (rβ
A = rα

B = 0) (see Section 2.8),

the two detector auto-correlation functions are:

Gαα =
ℵ2

α

NA

(
θA(

θ2
A + rα

Cθ2
C

)
)2 [

θ2
AhAA(τ) + (rα

C)2 θ2
ChCC(τ)− 2rα

CθAθChAC(τ)
]

(2.9)

Gββ =
ℵ2

β

NB


 θB(

θ2
B + rβ

Cθ2
C

)




2 [
θ2
BhBB(τ) +

(
rβ
C

)2
θ2
ChCC(τ)− 2rβ

CθBθChBC(τ)

]

and the double-detector cross-correlation function is:

Gαβ =
ℵαℵβ

NC

(
θ2
C(

θ2
A + rα

Cθ2
C

) (
θ2
A + rα

Cθ2
C

)
)

(2.10)

×
[
rα
Crβ

Cθ2
ChCC(τ) + θAθBhAB(τ)− rβ

CθBθChBC(τ)− rα
CθAθChCC(τ)

]

where θA ,
√

χA/χC , θB ,
√

χB/χC , and θC = −1. The correlation functions in Eqs. 2.9

and 2.10 may be expressed explicitly in terms of the dissociation constant, Kd, and the total

reactant concentrations, C
tot
A and C

tot
B , using the following relations:
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θ2
A = C

tot
A

CC
− 1 and θ2

B = C
tot
B

CC
− 1

with CC = 1
2

[(
C

tot
A + C

tot
B + Kd

)
−
√(

C
tot
A + C

tot
B + Kd

)2
− 4C

tot
A C

tot
B

]

= 1
2

[
C

tot
A + C

tot
B + Kd

(
1− 1

Γ

)]
(2.11)

2.3.3 Förster resonance energy transfer (FRET)

If species A and B are labeled with donor and acceptor fluorophores, respectively,

which undergo FRET with mean efficiency E upon forming complex C, then the relative α-

and β-visibilities for C can written as:

rα
C = (1− E) and rβ

C =
(
1 +

[
ηα

A/ηβ
B

]
E
)

(2.12)

For simplicity, I have assumed an ideal case in which there is no detector bleed-through (see

Section 2.8).

2.3.4 The correlation function amplitude: Gxy(0+)

As given by Eq. 2.8, the detector correlation function can be expressed as a prod-

uct of the amplitude at τ = 0+ and a unimodal shape factor. With perfect fluorophore

discrimination (rβ
A = rα

B = 0), the correlation function amplitudes can be written as:

Gαα(0+) =
ℵ2

α

NA

(
θA(

θ2
A + rα

C

)
)2 [

θ2
A + (rα

C)2
]

Gββ(0+) =
ℵ2

β

NB


 θB(

θ2
B + rβ

Cθ2
C

)




2 [
θ2
B +

(
rβ
C

)2
]

Gαβ(0+) =
ℵαℵβ

NC




[
rα
Crβ

C

]

(
θ2
A + rα

C

) (
θ2
A + rα

C

)


 (2.13)
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Here it is assumed that the fluorescence energy transfer event is much faster than

the time scale for intermolecular association and the time τ = 0+(τFRET ≪ 0+ ≪ τreac).

Using Eq. 2.13, the average number of reactant and complex molecules in the observation

volume, NA, NBand NC , can be solved for simultaneously and explicitly. Although these

expressions are quite lengthy for the case at hand (see Section 2.9), they simplify if no

spectral changes occur upon complex formation (i.e., rα
C = rβ

C = 1):103,138, 234

NC = ℵαℵβ ·
Gαβ(0+)

Gαα(0+) ·Gββ(0+)
, NA =

ℵ2
α

Gαα(0+)
−NC , NA =

ℵ2
β

Gββ(0+)
−NC (2.14)

2.3.5 Diffusion and reaction time scales

To assess whether reaction kinetics influence the shape of double-detector correlation

functions in an experimentally detectable manner, it is helpful to define characteristic diffu-

sion and reaction times, τdiff , w2
r/4np 〈D〉 and τreac ,

(
kf

[
CA + CB

]
+ kb

)−1
. Here, 〈D〉

is the ensemble-averaged diffusion coefficient of the particles in the volume, V,212 and np

is the number of photons used to excite a Gaussian-cylindrical or -ellipsoidal probe volume

of radial waist, wr (for a 2-photon excited Gaussian-Lorentzian volume,170 np=1.5). The

difference in diffusion and reaction timescales can then be expressed using the dimensionless

metric, ζ:

ζ ,
τdiff

τreac
=

(
wrkb

4np 〈D〉

)
· kb

Γ
(2.15)

where Γ ,
(
θ−2
A + θ−2

B + θ−2
C

)−1
. ζ characterizes the number of reaction turnover events

observed per dwell time for the ensemble of particles within the probe volume; within this

time, about half of the particles diffusively exchange with those outside the volume.170

The parameter Γ characterizes the position of reaction equilibrium. Using Eq. ??, Γ may
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be expressed explicitly in terms of the dissociation constant, Kd, and the total reactant

concentrations, C
tot
A and C

tot
B :

Γ =
Kd√(

C
tot
A + C

tot
B + Kd

)2
− 4C

tot
A C

tot
B

(2.16)

When Kd <
(
C

tot
A = C

tot
B

)
(complex formation is favored), Γ→ 0; when Kd =

(
C

tot
A = C

tot
B

)
,

Γ =
√

1/5; when Kd >
(
C

tot
A = C

tot
B

)
(reactants are favored), Γ→ 1.

2.4 Methods

Detector correlation functions, Gxy(τ), were simulated using Mathematica 4.1 (Wol-

fram Research Inc., Champaign, IL) on a 1.2 GHz Athlon processor, 256 MB Gateway

computer (Linux OS). Eigenvalues and eigenvectors of the matrix Msym were solved and

Zij(q, τ) expressions constructed symbolically as described in Section 2.7. An function

corresponding to either a one- or two-photon-excited Gaussian-ellipsoid volume was used.

When required, correlation functions were integrated by numerical cubature to six-digits of

precision using an adaptive Genz-Malik algorithm. Integrations were performed in recipro-

cal q-space over a range corresponding to xmin ≤ |x| ≤ ∞ with xmin = wr/10 in a single

dimension; identical results were obtained to within six-digit precision with a discretization

of xmin = wr/1000. The correlation function integration protocol was verified by compar-

ison with correlation function curves generated using analytical expressions for the case in

which DA = DB = DC and those derived by Elson and Magde (1974)65 in the limit of

DA = DC ≪ DB .

To assess whether detector correlation shape functions for a system with coupled
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reaction-diffusion, Hreac−diff
xy (τ), are experimentally distinguishable from those expected

from a comparable system without reaction, Hdiff
xy (τ), the variance between sets of curves

were compared using the F-statistic:18 Fxy ,
〈
χ2

υdiff
/χ2

υ

〉
Nexp

, where the brackets denote

an average over Nexp correlation curves. χ2
υ and χ2

υdiff
are the reduced chi-squares that

characterize the difference between the data, Hxy(τi), and the best-fit reaction-diffusion

model or diffusion-only model, respectively:

χ2
υ ,

1

υ

Nd∑

i

(
Hreac−diff

xy (τi)−Hdiff
xy (τi)

σxy(τi)

)2

χ2
υdiff

,
1

υdiff

Nd∑

i

(
Hdiff

xy (τi)−Hxy(τi)

σxy(τi)

)2

(2.17)

where υ and υdiff are the number of degrees of freedom for the fit (number of data points

minus number of fitting parameters), σ(τi) is the standard deviation for the Hxy(τi) data,

and Nd is the total number of time points used. Expressing Hxy(τi) as Hxy(τi)+ {φi}, with

Hxy(τi) corresponding to a reaction-diffusion parent function and {φi}, a random number

sampled from a Gaussian distribution of mean zero and variance σ2(τi):

Fxy =

〈(
υ

υdiff

)



∑Nd

i

([
Hdiff

xy (τi)−Hxy(τi)
]

+ {φi}
)2

/σ2(τi)

∑Nd

i

([
Hreac−diff

xy (τi)−Hxy(τi)
]

+ {φi}
)2

/σ2(τi)



〉

Nexp

(2.18)

F-statistics were computed using Nexp = 50, assuming the difference between best-fit

values, Hreac−diff
xy (τi), and the parent function used to generate the simulated data, Hxy(τi),

is negligible relative to {φi}. σ2(τi) values were estimated using an analytical formula derived

by Koppel (1974),141 validated by Meseth et al. (1999),172 and Wohland et al. (2001),269

and modified for the case in which data is acquired via two detectors and normalized by

Gxy(0+):
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σ2(τi) =

(
∆t

T

)
·




[1+H2
xy(∆t)][1+H2

xy(ti)]
[1−H2

xy(∆t)]
+ 2H2

xy

(
ti
∆t

)

+
2[1+H2

xy(ti)]
Gxy(0+)

√
〈nx〉〈ny〉

+
[1+Gxy(0+)Hxy(ti)]

G2
xy(0+)〈nx〉〈ny〉


 (2.19)

∆t is the detector channel sampling width; in practice, fluorescence intensities are moni-

tored over a series of time bins of varying duration and correlated as photon counts per

bin.80,251, 269 〈nx〉 is the average number of photon counts registered indetector channel x in

a given ∆t: 〈nx〉 =
(∑

i η
x
i N i + bx

)
∆t. An expression equivalent to Eq. 2.12 of Meseth et al.

(1999)172 is obtained by multiplying Eq. 2.19 by Gxy(0+) and substituting: (∆t/T ) = 1/M ,

∆t = ∆τ , τi/∆t = m, Hxy = g, Gxy(0+) = 1/N , and
√
〈nx〉 〈ny〉 = 〈n〉. An expression

similar to Eq. 47 of Kask et al. (1997)130 may be obtained by substituting: T = U , ∆t = T ,

and R=parenthetical terms; Kask et al.’s terms in 1/m have been omitted here assuming

m≫ 1, where m is the average number of particles in the probe volume that contribute to

the mean fluorescence intensity in each channel.

A value of ∆t = τ/10 and 25 τi-divisions per log τ were used in the calculation

of Fxy (Eq. 2.18), which approximates the quasi-logarithmic binning structure of avail-

able hardware correlator cards171,269 (e.g., from ALV-Laser Vertriebsgesellschaft m.b.H.,

Langen, Germany). Eq. 2.19 typically overestimates the true variance of the data, par-

ticularly at long τ values, but is qualitatively correct;172,212, 269 Eq. 2.19 becomes more

accurate as the number of particles in the probe volume contributing to the mean fluores-

cence increases.130,141, 205 Fxy were calculated using a τ -range of min [τreac, τreac] · 10−2 to

max [τreac, τreac] · 102, amounting to Nd~100-200 data points. τ = 0+ was set equivalent to

min [τreac, τreac] · 10−3. A minimum τ -range of 4 orders of magnitude (when τreac ∼ τreac)

is a conservative estimate of what is used experimentally to fit correlation data. Given the
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number of degrees of freedom (υ and υdiff ) and a value for Fxy, a reaction-diffusion model

can be considered a better descriptor of the simulated correlation data than a diffusion-only

model to within a confidence level dictated by the F-distribution.18 For calculations with

Nd ∼ υ ∼ υdiff ∼ 100 − 200, an Fxy value of 1.3 implies that a reaction-diffusion model

can be considered a better descriptor of the data with a p-value of 0.09-0.002. The validity

of my Fxy calculation approach was confirmed by reproducing F-statistic values of Meseth

et al. (1999)172 for conditions in which the auto-correlation function curves between a one-

component diffusing system and a two-component diffusing system could be distinguished

with a p-value of 0.01.

2.5 Results

2.5.1 Basic features of Gxy(τ)

The experimentally measured detector correlation functions are linear combinations

of component correlation functions, hij(τ), weighted by detectablity factors, dxy
ij , for each

fluorescent species in the sample (Eq. 2.5). These detectability factors are a function

of both the mole fraction, χi, and the relative visibility properties, rx
i , for each species

(Eq. 2.6). By using spectrally distinct reactant labels and monitoring fluorescence using

two detectors, additional information is available to determine the kinetics of the reaction,

A + B
kaGGGGGGBFGGGGGG
kb

C. In Figure 2.2, the detector correlation functions for such a reaction (in

the absence of energy transfer, E=0), are shown schematically as a sum of component

correlation functions. The total reactant concentrations and dissociation constant for the

reaction were set to C
tot
A = C

tot
B = Kd = 10−8 M with both reactants equally visible to their
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Figure 2.2: Detector correlation functions are a linear combination of component
contributions. Double-detector auto- and cross-correlation functions (Gαα(τ), Gββ(τ), and
Gαβ(τ)) for the reversible bimolecular reaction, A + B ⇌ C, shown as a sum of component
correlation functions, hij(τ), weighted by detectability factors, (Eq. 2.6). Detector channels
α and β monitor the fluorescence from species A and B, respectively. Parameters (assuming
2-photon excited 3D-Gaussian-ellipsoidal volume): wr = 0.48 µm, κ = 2.8, C

tot
A = C

tot
B =

Kd = 10−8 M, DA = DB = DC = 8.5× 10−7 cm2/s, ηα
A = ηβ

B = 15 kHz, and ζ = 100.
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intended detector (ηα
A = ηβ

B). The number of reaction turnover events per diffusive dwell

time, ζ (Eq. 7.5), was set to 100 with equal diffusion coefficients for A, B, and C. Each of the

component auto-correlation functions, dxy
ij ·hij(τ), decays monotonically with two shoulders,

the first occurring at τ = τreac and the second at τdiff = ζ · τreac. For this case in which

C
tot
A = C

tot
B = Kd, χC = 0.62 · (χA = χB), so that component auto-correlation contributions

of C are smaller than those of A or B : dxy
CC · hCC(0+) <

(
dxy

AA · hAA(0+) ∼ dxy
BB · hBB(0+)

)
.

In contrast, the component cross-correlation functions start from zero, increase over

a characteristic time τ ∼ τreac, and decrease due to diffusional de-correlation at a later time

τ ∼ τdiff . By mass action, a small, spontaneous increase in the concentration of A or B

would lead to a comparable increase in the formation of complex C at a later time ; thus,

reactants are positively cross-correlated with C (hAC(τ) > 0 and hBC(τ) > 0). Similarly, a

small, spontaneous increase in the concentration of one reactants would lead to a decrease

in the concentration of the other reactant so that reactants are negatively cross-correlated

(hAB(τ) < 0). For the case shown, dαβ
AC · hAC(τ) = dαβ

BC · hBC(τ) = −dαβ
AB · hAB(τ).

In the absence of hydrodynamic differences and energy transfer between particles,

the component auto-correlation and cross-correlation contributions sum to yield detector

correlation functions, Gxy(τ), with a single, smooth shoulder. As given by Eq. 2.8, it

is useful to express Gxy(τ)as the product of a shape function, Hxy(τ), and an amplitude

factor, Gxy(0+). Below, I examine the influence of FRET, reaction kinetics, and differential

visibilities of the reactants on Hxy(τ) and Gxy(0+), with the goal of determining conditions

under which reaction would influence Gxy(τ) to permit experimental determination of kinetic

parameters.
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2.5.2 Determining bimolecular reaction kinetics by analysis of Hxy(τ)

In principle, kinetic parameters can be deduced from an analysis of the measured

correlation decay. By toggling between different observable reaction states - states that may

be characterized by different intrinsic hydrodynamic and fluorescence properties - kinetic

inter-conversion indirectly modifies the shape of the detector correlation function. I consider

first the “worst-case” scenario in which DA = DB = DC so that reaction components can only

be resolved based on differences in their fluorescence characteristics. In this case, analytical

forms for Hxy(τ) exist in which the effects of reaction and diffusion can be decoupled65,251

(see Section 2.7). For a 3DG volume:

Hxy(τ) =

(
1 +

τ

τdiff

)−1(
1 +

τ

κ2τdiff

)−1/2

×
∑m

i

∑m
j dxy

ij

[
δij + Γ

θiθj

(
e−τ/τreac − 1

)]

∑m
i

∑m
j dxy

ij

(2.20)

where κ (termed the structure factor) is the axial:radial ratio of the observation volume,

wz/wr.149 The first bracketed term in Eq. 2.20 accounts for correlations arising from

diffusion alone while the second bracketed term accounts for correlations due to reaction.

Energy transfer enhances the influence of reaction kinetics on Hxy(τ). Ex-

ample detector auto- and cross-correlation shape functions, Hxy(τ) (Eq. 2.20), are shown

in Figure 2.3 for different E in the presence of reaction. A typical 2-photon 3DG volume103

of radial waist wr=0.48 µm and κ=2.8 was used, with an average of one reaction event ob-

served per diffusive dwell time (i.e., ζ = 1: τreac = τdiff ), ηα
A = ηβ

B =15 kHz, and Kd = 10−6

M, C
tot
A = C

tot
B = 10−8 M. For the detector auto-correlation functions, as E increases the

presence of reaction kinetics causes the curves to shift to smaller τ . For the case shown,
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1
1H α α ( τ ) E
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H α β ( τ )

H β β ( τ ) E
E = 0 . 90 . 70 . 50
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Figure 2.3: Energy transfer enhances the influence of chemical reaction on the
shape of the detector correlation functions. Detector correlation shape functions,
Hxy(τ) (see Eq. 2.8), plotted as a function of E. Arrows point in the direction of increasing
energy transfer between donor reactant A and acceptor reactant B, with E=0, 0.5, 0.7,
and 0.9. An average of one reaction turnover for every diffusive passage through the probe
volume (ζ = 1) was assumed. Parameters: wr = 0.48 µm, κ = 2.8, C

tot
A = C

tot
B = 10−8 M,

Kd = 10−6 M, DA = DB = DC = 8.5× 10−7 cm2/s, and ηα
A = ηβ

B = 15.
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however, the reaction kinetic effects are very small. As E increases, reaction significantly

changes the shape of the detector cross-correlation function: contributions from the compo-

nent cross-correlation functions, dαβ
AC · hAC(τ) and dαβ

BC · hBC(τ), increase dramatically (not

shown), causing the shoulder in Hαβ(τ) to shift upwards (to values greater than 1). With

DA = DB = DC , the maximum in Hαβ(τ) (see Eq. 2.20) occurs at:

τmax ≈ τreac

(∣∣∣W−1

[
e(−A(1+τdiff /τreac))

]∣∣∣− 1
)
− τdiff

where A , 1−
(∑m

i dii/
∑m

i

∑m
j dxy

ij Γ/θiθj

)
is the non-principal, real branch Lambert W -

function263 that can be approximated by: W−1[x] ≈ L1−L2 + L1/L2 with L1 , ln[−x] and

L2 , ln[−L1].

The FRET-enhanced effects of reaction kinetics on Hxy(τ) can be aug-

mented by an increase in ζ. ζ characterizes the number of reaction turnover events

observed per diffusive dwell time for the particles in the probe volume, V (Eq. 7.5). Figure

2.4A shows the effects of ζ, in conjunction with E, on the detector cross-correlation shape

function. Using similar parameters as in Figure 2.3, a ten-fold increase in ζ (τreac < τdiff )

remarkably enhances the effects of kinetics on the cross-correlation function curve shape in

synergy with E. A ten-fold decrease in ζ significantly diminishes these E -induced enhance-

ments. Similar trends were observed for the detector auto-correlation functions, although

the effects are less obvious (not shown). Importantly, if DA = DB = DC and E=0, the

presence of reaction cannot be detected no matter how many reaction events are observed

per dwell time.

The FRET-enhanced effects of reaction kinetics on Hxy(τ) can be aug-

mented when the donor reactant is more visible relative to the acceptor reac-
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Figure 2.4: Effects of FRET on TCFFM cross-correlation functions. In the presence
of FRET, the shape of the detector cross-correlation is sensitive to the average number of
reaction turnover events observed per diffusive dwell time, the ratio of reactant visibilities,
and a difference in the diffusion coefficients of reactants. (A) Effect of ζ, the number of
reaction turnover events observed per diffusive dwell time (Eq. 7.5), on Hαβ(τ) : (left)
ζ = 0.1; (right) ζ = 10. (B) Effect of differential reactant visibility: (left) ηα

A = 15 kHz
and ηβ

B = 1 kHz; (right) ηα
A = 1 kHz and ηβ

B = 15 kHz. (C ) Effect of differential reactant
diffusion: (left) DA = DC = 8.5 × 10−8 cm2/s and DB = 8.5 × 10−7 cm2/s and (right)
DB = DC = 8.5 × 10−8 cm2/s and DA = 8.5 × 10−7 cm2/s. (D) Same as (C ) with (left)
DA = DC = 1× 10−8 cm2/s and DB = 8.5× 10−7 cm2/s, and (right) DB = DC = 1× 10−8

cm2/s and DA = 8.5 × 10−7 cm2/s. Arrows point in the direction of increasing E=0, 0.5,
0.7, and 0.9. Parameters are as in Figure 2.3 unless otherwise indicated.
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tant. In the left panel of Figure 2.4B, the cross-correlation shape function is plotted as a

function of E assuming that the visibility of acceptor reactant, B, is 15 times lower than for

donor reactant, A (ηα
A=15 kHz and ηβ

B=1 kHz). In this case, direct excitation of acceptor B

is relatively poor (e.g., by 1-photon excitation) but energy transfer from donor A can lead

to sensitized emission from acceptor B. With such a visibility difference, the sensitivity of

Hαβ(τ) to reaction kinetics is enhanced by nearly 50% for the case shown (E=0.9). In the

right panel of Figure 2.4B, the opposite case is presented in which donor A is 15 times dim-

mer than the acceptor B (ηα
A=1 kHz and ηβ

B=15 kHz). Energy-transfer enhancements are

significantly reduced. In general, a simple difference in the visibility of reactants (without

energy transfer or a difference in reactant hydrodynamics) does not lead to an enhancement

of reaction effects on the shape of the correlation functions.

The FRET-enhanced effects of reaction kinetics on Hxy(τ) can be enhanced

if a hydrodynamic change accompanies reaction. In Figure 2.4C, the cross-correlation

shape function is shown as a function of E for a system in which one reactant (and the

complex) diffuses 10 times slower than the other reactant. For a hydrodynamic difference of

this magnitude, reaction kinetics can have a significant effect on Hαβ(τ) even without energy

transfer (cf. Figure 2.3, bottom). The synergy between energy transfer and a hydrodynamic

difference is greatest when the donor A is the slower diffusing reactant (Figure 2.4C, left and

right). For an even larger difference between reactant diffusion coefficients, the influence of

kinetics on Hαβ(0+) is further enhanced by energy transfer (Figure 2.4D).

Sensitivity of Gxy(τ) to reaction kinetics. The shape functions in Figs. 3 and 4

are exact theoretical predictions without added experimental errors. Because of the statisti-
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cal nature of TCFCM, points along the correlation curve will have intrinsic errors (approx-

imated by Eq. 2.19) that limit the ability to resolve reaction kinetics. To assess whether

the effects of reaction kinetics on the measured correlation functions are experimentally de-

tectable, F-statistics, Fxy, were computed (see Section 2.4). The Fxy statistics quantify the

appropriateness of a reaction-diffusion model vs. a diffusion-only model in describing the

simulated correlation function data (Eq. 2.18). In Figure 2.5, Fxy-contour plots are shown

for the worse-case scenario DA = DB = DC as a function of Kd, ζ, and E, assuming a

2-photon 3DG volume of wr0.48 and κ = 2.8, C
tot
A = C

tot
B = 10−8 M, D = 8.5 × 10−7cm2/s

and a total data acquisition time of 60 s. Contour plots do not change significantly if a

1-photon 3DG volume of wr = 0.33 and κ = 5 (e.g., see Langowski and Tewes (2000)149) is

used (not shown). Results for equivalently visible reactants (ηα
A = ηβ

B = 15 kHz) are shown

in panel A and for a less visible acceptor reactant B (ηα
A = 15 kHz and ηβ

B = 1 kHz) in panel

B; a background fluorescence of bα = bβ = 0.45 kHz was assumed (Eq. 2.2).

The gray shading denotes regions in which Fxy ≥ 1.3, as demarcated by the solid

contour. Using ≥ 100 correlation function time points to compute Fxy, values ≥ 1.3 imply

that reaction can be detected with a statistically significant p-value of <0.09 (see Section

2.4). The variance for each time point along the detector correlation function, and thus the

value of Fxy, is dependent upon the total data acquisition time, T (Eqs. 2.18 and 2.19).

As acquisition time increases, detection sensitivity improves in a manner proportional to

√
T , as indicated by the dashed contour (T=240 s) and the long-dashed contour (T=960 s)

(Figure 2.5A, center, bottom).

As energy transfer efficiency increases, a larger subset of Kd : ζ reaction conditions
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Figure 2.5: Limits of detector correlation function sensitivity to reaction. Contour
plots of Fxy as a function of E. Fxy characterizes the feasibility of discriminating between the
detector correlation functions (Eqs. 2.9 and 2.10) expected for a diffusion-only system (A, B,
C ) vs. a reaction-diffusion system (A + B ⇌ C) (Eq. 2.18). Solid contour lines demarcate
regions (in gray) in which the presence of reaction can be detected with a confidence level of
p<0.09 using a data acquisition time of 60 sec (see 2.4). Detection sensitivity is improved in
a manner proportional to the square root of the data acquisition time (Eq. 2.19) as shown
indicated by the dashed contour (240 sec) and long-dashed contour (960 sec). Parameters:
C

tot
A = C

tot
B = 10−8 M, wr = 0.48 µm, rα

A = rβ
B = 0, κ = 2.8, bα = bβ = 0.45 kHz (Eq. 2.2),

and (A) ηα
A = ηβ

B = 15 kHz; or (B) ηα
A = 15 kHz, ηβ

B = 1 kHz. The cross-hair marks the

condition in which C
tot
A = C

tot
B = Kd, with one reaction turnover event observed on average

per diffusive dwell time (log ζ = 0). Contours shift to the right as C
tot
A = C

tot
B increases (see

text).
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becomes accessible to TCFCM curve-shape analysis. As E increases, fewer reaction turnover

events per diffusive dwell time are needed to observe the effects of reaction kinetics (contour

boundaries shift to lower log ζ values). Consistent with the results of Figure 2.3 showing

that the shape of the cross-correlation function is most sensitive to E, when reactants are

comparable in visibility a larger subset of E -enhanced reactions are accessible by Gαβ(τ)

analysis than by Gαα(τ) or Gββ(τ) auto-correlation analysis (Figure 2.5A). When ηα
A > ηβ

B ,

the subset of reactions amenable to Gββ(τ) and Gαβ(τ) analysis increases (contours shift

down to lower ζ values, by about an order of magnitude) (Figure 2.5B). Contour boundaries

are approximately parabolic in ζ and with minima centered around C
tot
A = C

tot
B = 10−8

M for the case shown. If the total concentration of reactants (C
tot
A = C

tot
B ) is increased,

contour boundaries shift to the right toward higher Kd by a comparable amount without a

significant change in shape (not shown).

2.5.3 Determining particle concentrations by Gxy(0+) analysis

The magnitude of the double-detector correlation function amplitude, Gxy(0+), is a

function of both the average number and relative visibility of particles in the probe volume,

V (Eq. 2.13). In Figure 2.6, the detector auto- and cross-correlation amplitudes in the

absence of energy transfer are plotted as a function of Kd with C
tot
A = C

tot
B = 10−8 M.

Both detector auto-correlation function amplitudes, Gαα(0+) and Gββ(0+), are independent

of Kd as expected according to Eq. 2.14, since 1/Gαα(0+) ∝
(
NA + NC

)
∝ C

tot
A and

1/Gββ(0+) ∝
(
NB + NC

)
∝ C

tot
B . In contrast, the cross-correlation function amplitude

vs. Kd relation is sigmoidal. Unlike the auto-correlation function amplitudes, the cross-

correlation amplitude is directly proportional to the number of C molecules (Eq. 2.14).
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Figure 2.6: Detector correlation function amplitudes as a function of the dissoci-
ation constant for the reaction, A + B ⇌ C. Gxy(0+) amplitudes computed assuming

zero energy transfer (Eq. 7.5). Parameters: C
tot
A = C

tot
B = Kd = 10−8 M, wr = 0.48 µm,

κ = 2.8, ηα
A = ηβ

B = 15 kHz, and zero background fluorescence.

Gαβ(0+) amplitudes decrease as Kd increases above C
tot
A = C

tot
B (Γ → 1 and reaction

equilibrium favors reactants, Eq. 2.16). As Kd decreases below C
tot
A = C

tot
B (equilibrium

favors the formation of C ), the cross-correlation amplitude approaches an asymptotic value

corresponding to CC → C
tot
A = C

tot
B .

Energy transfer results in lower cross-correlation amplitudes, Gαβ(0+).

As energy transfer efficiency increases, both α- and β-detector auto-correlation amplitude

curves increase in a complicated fashion as governed by Eq. 2.13 (Figure 2.7A). The cross-

correlation function amplitude, Gαβ(0+), is proportional to rα
Crβ

C . Using Eq. 2.12 and

assuming equivalently visible reactants, rα
Crβ

C = (1− E) (1 + E), which is a parabolic func-

tion in energy transfer efficiency with a maximum at E=0. Thus, as E increases, Gαβ(0+)

amplitudes decrease for all values of Kd (Figure 2.7B). The right panel of Figure 2.7B shows
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Figure 2.7: Detector correlation function amplitudes are sensitive to energy trans-
fer. (A) Detector auto-correlation and (B) cross-correlation amplitudes vs. log Kd as a
function of E (Eq. 2.13). (B, right) Expanded view in the region where cross-correlation
amplitudes are comparable to the experimental amplitude errors assuming data acquisition
times of 240 sec or 960 sec (dashed lines). Parameters: as in Figure 2.6.
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an expanded view in the region where cross-correlation amplitudes drop below the statisti-

cal noise/detection limits indicated by the dashed (T=240 s) and long-dashed (T=960 s)

lines. For the case shown (C
tot
A = C

tot
B = 10−8 M), with T=240 s and E=0.9 or T=960

s and E=0.7, the maximum Kd that yields a cross-correlation amplitude greater than the

estimated statistical error is Kmax
d ≈ 10−6 M. For C

tot
A = C

tot
B = 10−7 M under similar condi-

tions, Kmax
d ≈ 10−5 M (not shown). In general, the maximum Kd that leads to a measurable

cross-correlation amplitude above statistical noise is given by Kmax
d ≈

(
C

tot
A = C

tot
B

)
· 102.

2.6 Discussion

2.6.1 Energy transfer in TCFCM

The motivations for this study were two-fold: (1) to assess the utility of TCFCM

for studying reversible bimolecular reactions without the need for reaction initiation or

chemical perturbation and (2) to determine the influence of resonance energy transfer on

TCFCM auto- and cross-correlation functions. The results presented in Figure 2.7 suggest

that determination of particle concentrations via Gxy(0+) amplitude analysis is complicated

by FRET (Eq. 2.14 and 2.9). Moreover, the presence of FRET produces decreased detector

cross-correlation amplitudes. If E<0.3, the effects of FRET on Gxy(0+) can generally be

ignored and particle concentrations can be determined using Eq. 2.14 to within an error

of ≤10%. As mean energy transfer efficiencies increase above E=0.3, the error increases

exponentially.

Although FRET complicates Gxy(0+) analysis and is best avoided if only particle

concentrations (or ratios) are of interest, FRET is advantageous for measurements of bi-
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molecular reaction kinetics. If reaction components are of comparable size, reaction kinet-

ics cannot be detected without FRET. My results suggest that under certain conditions,

TCFCM in conjunction with FRET can be used to monitor reaction kinetics. The inter-

play between energy transfer and reaction kinetics in altering the shape of the correlation

function as proposed here has been demonstrated recently in a different context by Widen-

gren et al. (2001).267 In contrast to my results (which assess the possibility of measuring

reaction kinetics given a known amount of energy transfer), Widengren et al. exploited the

effects of a well-characterized fluorophore cis-trans isomerization reaction on the shape of

the auto-correlation function as a means to measure FRET efficiencies of double-labeled

DNA duplexes of varying lengths.

2.6.2 Analysis of bimolecular reaction kinetics by TCFCM

To successfully measure reaction kinetics by curve-shape analysis, a sufficient number

of ”reaction fluctuations” per observation interval, ζ, must be observed. The dimensionless

parameter ζ is a function of the characteristic diffusion time of the reacting particles in the

probe volume, τdiff the position of equilibrium variable, Γ, and the reverse rate constant, kb

(Eq. 7.5). For unimolecular reactions, Γ = 1+ kf/kb, and ζ is a function of the forward and

reverse rate constants but not reactant concentrations. For bimolecular reactions, however,

Γ and thus ζ are functions of kf and kb, as well as the equilibrium constant for the reaction

relative to the total concentration of the reactants (see Eq. 2.16). When C
tot
A = C

tot
B , the

relative concentration fluctuations for both the reactants and complex are greatest,14 leading

to maximal detector cross-correlation function amplitudes.

From the Gxy(τ) reaction sensitivity landscapes in Figure 2.5, the reaction conditions
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that permit measurable differences in the detector correlation functions can be determined.

For a 2-photon 3DG volume of wr=0.48 µm and κ=2.8, with DA = DB = DC = 8.5× 10−7

cm2/s (D for green fluorescent protein in water49), τdiff ∼ 3.7 × 10−4 s; this value is

similar for a 1-photon 3DG with wr=0.33 µm and κ=5. Using Eq. 7.5, ζ = τdiffkfKd/Γ,

and expressing Γ as a function of C
tot
A , C

tot
B , and Kd (Eq. 2.16), the conditions under

which reactions are accessible by Gαβ(τ) analysis can be estimated from the contours of

Figure 2.5. These reaction conditions are shown in Figure 2.8 assuming E=0.9, T=960 s,

and ηα
A/ηβ

B = 15, for different values of C
tot
A = C

tot
B . For reactions with a Kd ∼ 10−9 M,

reaction kinetics are typically inaccessible unless kf & 109 M−1s−1. Reactions with kf & 108

M−1s−1 are accessible if the Kd is within the window of ∼ 10−8 to ∼ 10−6 M, for all the

total reactant concentrations shown (dark gray). As C
tot
A = C

tot
B increases, lower affinity

reactions with slower forward rates can be studied: if C
tot
A = C

tot
B = 10−7 M, reactions with

a Kd ≤ 10−5 M and kf & 107 M−1s−1 are accessible; if C
tot
A = C

tot
B = 10−6 M, reactions with

a Kd ≤ 10−4 M and kf & 106 M−1s−1 should be accessible. To optimize the influence of

kinetics on the detector cross-correlation function, the reactive system is best poised when

Kd ·10−2 ≤
(
C

tot
A = C

tot
B

)
≤ Kd ·102, where the upper limit ensures that Gxy(0+) amplitudes

are measurable above statistical noise.

The resolution of reaction kinetics by Gxy(τ) analysis can also be improved if other

reactant property differences exist and/or these properties change upon reaction. As demon-

strated in Figs. 2.4C and D, if the diffusion coefficient for one reactant is significantly larger

than the other, the influence of kinetics on Gαβ(0+) can be observed without the presence

of energy transfer, although energy transfer magnifies these effects. A significant quantum
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Figure 2.8: Subset of bimolecular reaction kinetics accessible to detector cross-
correlation function analysis. Subset of reaction parameters (kf , Kd, and C

tot
A = C

tot
B )

that lead to measurable differences in Gαβ(τ) (Fαβ ≥ 1.3) indicated in different tones of
gray. Determined from Figure 2.5 using ζ ∼ τdiffkfKd/Γ (Eqs. 7.5 and 2.16) with τdiff ≈
3.7× 10−4 s, for E=0.9, T=960 s, and ηα

A/ηβ
B = 15. Open circles mark the condition, Kd =(

C
tot
A = C

tot
B

)
· 102, an estimate of the maximum Kd with detectable Gαβ(0+) amplitudes

above statistical noise. Shown for C
tot
A = C

tot
B = 10−8 M (solid line), 10−7 M (dashed), and

10−6 M (short dashed).
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yield change of one reactant upon binding could also result in a pronounced effect of re-

action on Gxy(τ). This has been demonstrated in studies of ethidium bromide binding to

DNA65,116, 160 and of 1-anilino-8-naphthalene sulfonic acid binding to partially folded pro-

teins.20,147 Quantum yield enhancement upon binding in combination with FRET would

likely extend the set of reactions accessible to TCFCM analysis.

2.6.3 Biochemical relevance

The association rate for two molecules can be expressed as kf , pbind · kcoll, where

kcoll is the diffusional encounter rate and pbind is the probability of successful binding upon

colliding. From simple collision theory, kcoll ∼ 7 × 109 M−1s−1 in water for comparably

sized reactants; if one reactant is larger than the other, kcoll may be higher due to the

larger target area of the former and higher mobility of the latter.70 For protein-protein

complexes, pbind is typically ∼ 10−5 and basal protein-protein docking rates in vitro are

∼ 105 M−1s−1,125 although long-range electrostatic factors can accelerate these rates by up

to 103.124,183, 225 Thus, association rates constants, kf , for protein complexes typically are in

the range 104−105 M−1s−1 with the majority being ∼ 106 M−1s−1.70,77, 125, 183 Dissociation

rates are much more varied, typically in the range 10−7−104 s−1,70,125 so that Kds are in the

range 10−13 − 102 M. Protein-ligand (e.g., antibody-hapten) and small nucleic acid duplex

interactions generally have faster association and dissociation rates (107 − 109 M−1s−1 and

101 − 104 s−1, respectively), with Kds typically spanning the range 10−8 − 10−3 M.28,70, 191

The results of the analysis here suggest that the kinetic rate constants for a subset

of these protein-protein and protein-ligand reactions can be deduced by curve-shape analy-

sis of the detector cross-correlation function, provided energy transfer efficiency within the
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reaction complex is sufficiently high (E ≥ 0.7), a sufficient experimental data acquisition

time, the total concentration of reactants is sufficiently high (≥ 10−8 M), and the reac-

tion equilibrium is properly poised. When reactants are comparably sized, reactions must

typically be near the diffusion-limit (kf ≥ 107 M−1s−1) to be observable. Examples of

macromolecular interactions characterized by very fast association rates, include: barnase

and barstar (108 − 1010 M−1s−1),225 insulin dimerization (108 M−1s−1),142 cytochrome c

with cytochrome c peroxidase or cytochrome b5 (107 − 109 M−1s−1),183 various tRNA and

tRNA synthetases (108 M−1s−1),70 and unfolded bovine pancreatic trypsin inhibitor and the

E. coli chaperone, SecB (109 − 1010 M−1s−1).69 When one reactant is considerable larger

than the other reactant, the subset of kinetic parameters that lead to detectable changes

in the cross-correlation function is extended. Some biological examples where reactants

have very different diffusion coefficients include the binding of cytosolic proteins to mem-

brane proteins, lipidic domains, or scaffold proteins,68,113 and of soluble factors to relatively

immobile cytoskeletal or vesicular structures.

In summary, it should be possible to study a subset of biologically relevant bimolec-

ular reactions by analysis of TCFCM correlation functions without the need for chemical

perturbation. While Gxy(0+) analysis of reactant concentrations is substantially complicated

by the presence of energy transfer, FRET is advantageous for kinetic studies, and essential

if there is little hydrodynamic difference between interacting components. If particle con-

centrations are the primary quantities of interest, the effects of FRET may be neglected for

E ≤ 0.3 without incurring significant error (≤10%).
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2.7 Appendix 2A: Solution for the spatio-temporal dissipation

function, Zij(q, τ)

For the bimolecular reaction, A+B
kaGGGGGGBFGGGGGG
kb

C, the linearized reaction-diffusion matrix

Eq. 2.4 is:

M =




−kfCB −DAq2 −kfCA kb

−kfCB −kfCA −DBq2 kb

kfCB kfCA −kb −DCq2




(2.21)

By detailed balance (RijCj = RjiCi), M can be made symmetric by the similarity trans-

formation Msym , X−1MX, where X is the diagonal matrix with Xij , δij

√
Ci.65,115, 260

Using the following reduced variables: ρ = kb/DC , θA =
√

CA/CC , θB =
√

CB/CC ,

θC = −1, D̂A , DA/DC , and D̂B , DB/DC , the matrix Msym becomes:

Msym = ρDC




−θ−2
A − D̂Aq2/ρ −(θAθB)−1 θ−1

A

−(θAθB)−1 −θ−2
B − D̂Bq2/ρ θ−1

B

θ−1
A θ−1

B −θ−2
C − q2/ρ




(2.22)

Solutions to Eq. 2.4 for δC̃(q, τ) are obtained by solving for the eigenvalues and

eigenfunctions of Msym. The spatio-temporal dissipation function Zij(q, τ) in Eq. 2.7 can

then be written as: Zij(q, τ) =
∑

s Y
(s)
j ·exp

[
λ(s)τ

]
·
(
Y

(s)
j

)−1
, where Y

(s)
j and

(
Y

(s)
j

)−1
are

the sth eigenvector and inverse eigenvector, respectively, corresponding to the eigenvalue,

λ(s).65,115 Use of a symmetric matrix leads to six unique Zij(= Zji) expressions rather than

eight if the matrix M were used directly (for which Zij 6= Zji).

For the bimolecular reaction, A + B
kaGGGGGGBFGGGGGG
kb

C, with D̂A = D̂B = 1, the diffusive and
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reactive components of Zij(q, τ) decouple:

Zij(q, τ) =

(
δij +

Γ
(
e−τ/τreac − 1

)

θiθj

)
· exp

[
− wrq

2τ

4npτdiff

]
(2.23)

where Γ is defined in association with Eq. 2.16. With D̂A = 1 and D̂B ≫ 1, the Zij(q, τ)

functions are:

ZAA(q, τ) =
(
1 + θ−2

A

)−1 [
Ediff + θ−2

A Ereac

(
C −

(
1 + q2T −Q

)
S
)]

ZBB(q, τ) = Ereac

(
C −

(
1 + q2T −Q

)
S
)

ZCC(q, τ) =
(
1 + θ−2

A

)−1 [
θ−2
A Ediff + Ereac

(
C −

(
1 + q2T −Q

)
S
)]

ZAB(q, τ) = − (θB/θA) EreacQS

ZBC(q, τ) = θBEreacQS

ZAC(q, τ) =
(
θA + θ−1

A

)−1 [
Ediff − Ereac

(
C −

(
1 + q2T −Q

)
S
)]

(2.24)

where

Ediff , exp

[
−
(

w2
rq

2

4np

)
τ

τC

]

Ereac , exp

[
−
(

1 + q2P

2

)
τ

τreac

]

C , cosh

[
U
(
q2
)
τ

2τreac

]

S , sinh

[
U
(
q2
)
τ

2τreac

]
/U
(
q2
)

U
(
q2
)

,
√

(1 + q2L)2 − 2q2LQ

Q , 2Γ/θ2
B

L , DC

(
1− D̂B

)
τreac

P , DC

(
1 + D̂B

)
τreac

τC , w2
r/4npDC (2.25)
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For DA 6= DB 6= DC , the eigenvalues and eigenvectors for Msym (Eq. 2.22) must

be solved using a modified cubic root equation assuming real roots.263 Since Msym is a

symmetric 3× 3 matrix, the associated eigenvalues must be real and distinct. The resulting

Zij(q, τ) functions are provided below; note that these are mostly dependent upon one

reactant species explicitly (the “pivot” species, in this case, B), with implicit dependence on

the other reactant species (A):

ZAA(q, τ) =

3∑

j

(−1)jeλjτΛkl

(
Γ2 −

(
Γ + (DCq2 + λj)τreac

) (
Γ + θ2

B

(
DBq2 + λj

)
τreac

))
(
θ2
BΛ12Λ13Λ23τ2

reac

)

ZBB(q, τ) =
3∑

j

(−1)jeλjτΛkl

(
DCq2 + λj

) (
Γ∆BCq2 + θ2

B

(
DBq2 + λk

) (
DBq2 + λl

)
τreac

)

θB∆BCΛ12Λ13Λ23τreacq
2

ZCC(q, τ) =
3∑

j

(−1)jeλjτΛkl

(
DCq2 + λj

) (
Γ∆BCq2 −

(
DBq2 + λk

) (
DBq2 + λl

)
τreac

)

∆BCΛ12Λ13Λ23τreacq
2

ZAB(q, τ) =

3∑

j

(−1)jeλjτΛklΓ
(
DCq2 + λj

)

θAθBΛ12Λ13Λ23τreac

ZBC(q, τ) =

3∑

j

(−1)j−1eλjτΛkl

(
DBq2 + λj

) (
Γ∆BCq2 − θ2

B

(
DBq2 + λk

) (
DBq2 + λl

)
τreac

)

θB∆BCΛ12Λ13Λ23τreacq2

ZAC(q, τ) =

3∑

j

(−1)j−1eλjτΛklΓ
(
DBq2 + λj

)

θAΛ12Λ13Λ23τreac
(2.26)

where k and l (in Λkl) are indices excluding j from the ordered set {1, 2, 3} (i.e., for: j = 1,

(k, l)→ (2, 3); j = 2, (k, l)→ (1, 3); j = 3, (k, l)→ (1, 2)) and:
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λj(q) ,
1

3

(
2V (q) cos

(
Θ(q) + (j − 1)2π

3

)
−
[
DΣq2 +

1

τreac

])

Λjk(q) ,
2V (q)

3

(
cos

(
Θ(q) + (j − 1)2π

3

)
− cos

(
Θ(q) + (k − 1)2π

3

))

V (q) ,

√
[
∆2

AB + ∆CA∆CB

]
q4 +

[
3Γ

(
DA

θ2
A

− DB

θ2
B

− 1

)
−DΣ

]
q2 +

1

τ2
reac

Θ(q) , arccos

(
1

4V (q)

{
[(DΣ − 3DA) (DΣ − 3DB) (DΣ − 3)]q6

+

[
3Γ

τreac

(
3ΣBCθ−2

A (DΣ − 3) + ΣACθ−2
B (DΣ − 3)

+ 3Γ
(
ΣACΣBC −∆2

AB − 4
)

+
(
9−D2

Σ −∆2
AB −∆CA∆CB

))]
q4

+

[
3Γ

τ2
reac

(
3
(
ΣAB + ΣACθ−2

B + ΣBCθ−2
A

)
− 2DΣ

)]
q2 +

2

τ3
reac

})

∆XY , (DX −DY )

ΣXY , (DX + DY )

DΣ , (DA + DB + DC) (2.27)

Note that for the sake of printed compactness, the equations associated with the general

solution (Eqs. 2.26-2.27) are expressed in terms of dimensioned diffusion coefficients (DX)

instead of the dimensionless ones (D̂X).



45

2.8 Appendix 2B: Double-detector correlation function ex-

pressions, Gxy(τ)

The double-detector correlation functions of Eq. 2.5 can be written explicitly and

generally as:

Gαα(τ) =

( ℵ2
α

NA

)(
θ2
A(

θ2
A + rα

Bθ2
B + rα

Cθ2
C

)2

)

×




θ2
AhAA(τ) + (rα

B)2 θ2
BhBB(τ) + (rα

C)2 θ2
ChCC(τ)

+2 (rα
BθAθBhAB(τ)− rα

CθAθChAC(τ)− rα
Brα

CθBθChBC(τ))




Gββ(τ) =

(
ℵ2

β

NB

)


θ2
B(

rβ
Aθ2

A + θ2
B + rβ

Cθ2
C

)2




×




(
rβ
A

)2
θ2
AhAA(τ) + θ2

BhBB(τ) +
(
rβ
C

)2
θ2
ChCC(τ)

+2
(
rβ
AθAθBhAB(τ)− rβ

Arβ
CθAθChAC(τ)− rβ

CθBθChBC(τ)
)




Gαβ(τ) =

(ℵαℵβ

NC

)
 θ2

C(
θ2
A + rα

Bθ2
B + rα

Cθ2
C

) (
rβ
Aθ2

A + θ2
B + rβ

Cθ2
C

)




×




rβ
Aθ2

AhAA(τ) + rα
Bθ2

BhBB(τ) + rα
Crβ

Cθ2
AhCC(τ)

+
(
1 + rα

Brβ
A

)
θAθBhAB(τ)−

(
rβ
C + rα

Crβ
A

)
θAθChAC(τ)

−
(
rα
Brβ

C + rα
C

)
θBθChBC(τ)



(2.28)

where rα
B = ηα

B/ηα
A and rβ

A = ηβ
A/ηβ

B are conjugate variables that describe the amount of

non-ideal bleed-through fluorescence registered in a non-preferred detector channel. When

rβ
A = rα

B = 0, the expressions of Eq. 2.28 simplify to those of Eqs. 2.9 and 2.10.

The relative α- and β-visibilities for the complex C, formed by the association of donor

A and acceptor B, can be written in terms of intended and bleed-through contributions as
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follows:

intended bleed-through

rα
C = ηα

C/ηα
A = (1− E) +

{(
rα
Bηβ

B/ηα
A

)(
1 +

[
ΦBηα

A/ηβ
B

]
E
)}

rβ
C = ηβ

C/ηβ
B =

(
1 +

[
ΦBηα

A/ηβ
B

]
E
)

+
{(

rβ
Aηα

A/ηβ
B

)
(1− E)

}

(2.29)

where ΦB is the product of the quantum yield for acceptor species B (QB) and the ratio of

the β to α channel detection efficiencies (gβ/gα). When ΦB = 1 and rβ
A = rα

B = 0, Eq. 2.29

simplifies to Eq. 2.12.
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2.9 Appendix 2C: Expressions for N i in the absence of bleed-

through fluorescence

Expressions for NA, NB , and NC as a function of Gαα(0+), Gββ(0+) and Gαβ(0+)

for the case in which there is no bleed-through fluorescence:

NA = (rα
C)2

(
rβ
CℵαGαα(0+)Gββ(0+)−

(
rβ
C − 1

)
ℵαG2

αβ(0+)− ℵβGαα(0+)Gαβ(0+)
)

×

(
rβ
CℵαGββ(0+) + (rα

C − 1)ℵβGαβ(0+)
)

((
rα
C − 1

) (
rβ
C − 1

)
G2

αβ(0+)− rα
Crβ

CGαα(0+)Gββ(0+)
)2

NB =
(
rβ
C

)2 (
rα
CℵβGαα(0+)Gββ(0+)− (rα

C − 1)ℵβG2
αβ(0+)− ℵαGββ(0+)Gαβ(0+)

)

×

(
rα
CℵβGαα(0+) +

(
rβ
C − 1

)
ℵαGαβ(0+)

)

((
rα
C − 1

) (
rβ
C − 1

)
G2

αβ(0+)− rα
Crβ

CGαα(0+)Gββ(0+)
)2

NC = Gαβ(0+)
(
rα
CℵβGαα(0+)−

(
rβ
C − 1

)
ℵαGαβ(0+)

)

×

(
rβ
CℵαGββ(0+) + (rα

C − 1)ℵβGαβ(0+)
)

((
rα
C − 1

) (
rβ
C − 1

)
G2

αβ(0+)− rα
Crβ

CGαα(0+)Gββ(0+)
)2 (2.30)
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Chapter 3

Instrumentation and Pilot

Experiments

Quantitative Two-Color Fluorescence Correlation Spectroscopy Determinations of Absolute

Particle Concentrations: Towards a Proof-of-Principle Demonstration On a Model Interact-

ing DNA Duplex System
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3.1 Introduction

Fluorescence fluctuation microscopy (FFM) is a technique by which absolute parti-

cle numbers can be quantified in a chemically non-pertubative manner. Recently, I helped

develop a general theory for evaluating bimolecular interactions using a two-color fluores-

cence correlation microscopy variant of FFM (TCFCM) (Biophys. J. 83:533-546) . Here,

I describe my efforts towards establishing an approach for measuring the concentrations

of fluorescently labeled components that undergo the reversible bimolecular association,

A + B
kaGGGGGGBFGGGGGG
kb

C. The specific goal of this approach would be to determine the equilibrium

constant for these components from a single two-color fluorescence fluctuation microscopy

(TCFFM) measurement. An important aspect of this approach is to explicitly account

for background fluorescence, fluorophore-detector bleed-through/cross-talk, and Föorster

resonance energy transfer (FRET) between interacting components. Such detection non-

idealities, while often present in TCFFM experiments, are rarely accounted for in practice. A

home-built two-photon excitation TCFFM apparatus was constructed to perform very sensi-

tive TCFFM measurements. Using this apparatus, I have made pilot measurements of a vari-

ety of Green Fluorescent and Red Fluorescent proteins, and a pair of non-self-complementary

DNA strands, d(ATCTACGAGTG):d(CACTCGTAGAT), each strand labeled with either

Rhodamine Green or Texas Red. The instrumentation and work described in this chapter

lay the groundwork for determining Kds directly from auto- and cross-correlation function

amplitudes, without resorting to titration/strand-displacement experiments as is current

practiced.
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3.2 Materials and Methods

3.2.1 TCFFM Instrumentation

TCFFM measurements were made using a home-built apparatus shown schematically

in Figure 3.1. A kit-assembled, water-cooled Ti:Sapph laser (Kapteyn-Murnane Laborato-

ries, LLC, Boulder, CO) was pumped by a 5W 532 nm Nd:YAG laser (Verdi; Coherent Inc.,

Santa Clara, CA), tuned and mode-locked at 830 nm (.50 fs pulses at 91 MHz; average

power >300 mW, beam diameter ∼ 1 mm). Residual 532 nm forward scattered laser light

was block using a RG780 Schott Glass filter (Schott Corp., Yonkers, NY). After Galilean

beam expansion (10X) (lenses from New Focus Inc., Santa Clara, CA), <20% of this IR laser

beam was reflected by a beam-splitting mirror (BS1-790-20-1025-45P; CVI Laser Corp., Al-

buquerque, NM) and attenuated by an appropriate absorption neutral density (ND) filter

to achieve <100 mW of average power. This expanded beam was steered into a Nikon

TE300 inverted epi-fluorescence microscope (Nikon Inc., Melville, NY) and reflected by an

infrared dichroic mirror (TLM1-800-45; CVI Laser Corp.) to sufficiently fill the back aper-

ture of a mounted Nikon infinity-corrected 60X 1.2 NA water immersion objective. Collected

sample fluorescence was focused through a second dichroic mirror with green/red selective

filters (see Sec. 3.2.2) and onto two 125 µm core diameter (0.37 NA) multi-mode fiber

light-guides (CF01493-09; Thor Labs Inc., Newton NJ) mounted on precision x-y-z trans-

lation stages (New Focus Inc., Santa Clara, CA). Fluorescence emission was detected by

two avalanche photodiodes (APD), each with a dark currents < 50 cps (SPCM-AQR-15-FC;

Perkin Elmer Optoelectronics, Quebec, Canada). Auto- and cross-correlation functions of

the APD TTL pulsed signals were computed online using a mutiple-tau digital correlator
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Figure 3.1: Schematic of the home-built TCFFM apparatus.
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card (Flex01LQ-08; Correlator.com, Bridgewater, NJ) with 8 ns time resolution and multi-

time scale (quasi-logarithmic) parallel correlation. Sample positioning was accomplished

using a micromotor-driven mechanical stage (Prior Scientific, Rockland MA). 200 µL sam-

ple volumes were placed in an 8-well chambered #1.5 coverglass system (Lab-Tek II; Nalge

Nunc International, Rochester, NY), held in place by a custom-made stage-adapter plate.

A femtosecond pulsed Ti:Sapph laser was used as an illumination source for two

reasons: (1) to ensure a spatially well-defined focal volume via two-photon fluorescence ex-

citation,53 and (2) to excite fluorophore pairs that normally cannot be excited efficiently

using a single laser line in the visible spectrum.270 Fluorophore pairs could also be excited

using a dual laser line excitation scheme;211,234 however, this can lead to unavoidable chro-

matic differences in observation volume for each fluorophore and significantly complicate

data analysis

The Ti:Sapph laser schematic is shown in Figure 3.2 Photos of the laser sub-assembly

and overall cavity are shown in Figs. 3.3 and 3.4, respectively. The Ti:Sapph laser cavity is

∼1.5 m, bounded by two outer mirrors: a high reflecting (HR) mirror of 99.99% reflectance

and an output coupler (OC) mirror transmits ∼1-10% of the cavity laser light. At the core

of the laser cavity is a sub-assembly containing a lens that focuses a “pump” excitation

laser beam onto a the Ti:Sapph crystal and a set of dichroic mirrors that direct infrared

laser fluorescence collected from the crystal towards the outer cavity mirrors. Fluorescence

directed from the sub-assembly to the HR mirror is first positively dispersed by a prism,

wavelength selected by a computer controlled slit, and then negatively dispersed by a second

prism (both prisms are aligned at Brewsters angle relative to the incident beam to minimize
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Figure 3.2: Schematic of the Ti:Sapph laser cavity. A 5W 532 nm Nd:Yag laser is
focused onto a titanium:sapphire crystal, exciting infrared (IR) fluorescence that is collected
by highly reflective IR dichroic mirrors, reflected by cavity end mirrors, and focused back
onto the crystal to get stimulated emission and lasing. A slit and a pair of prisms is used
tune laser wavelength. The set of cavity mirrors used (high reflecting (HR; 99.99% reflecting)
and output coupler (OC; 90-99% reflecting) is effective over wavelengths of 780-850 nm. An
average laser power of 300 mW is routinely achieved at 820-830 nm. The cavity length is ∼1.5
m, resulting in a repetition rate of 91 MHz between femtosecond pulses upon mode-locking
(see text for details).

B M 1 C M 2 L

Figure 3.3: Photo of Ti:Sapph laser sub-assembly. 532 nm excitation light is focused
through a lens (L) and dichroic mirror (M2) onto a water-cooled titanium-doped sapphire
crystal (C), through a second dichroic mirror (M1) and beam dumped (B). Infrared fluores-
cence from the crystal is collected via the two dichroic mirrors and directed to two cavity
mirrors (not shown; see Figs. 3.2 and 3.4).
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H R O C

Figure 3.4: Photo of Ti:Sapph laser cavity. Left, view showing the high reflectance mir-
ror (HR); right, view showing the output coupler mirror (OC). Green arrows show path of the
532 nm excitation pump beam. Red arrows show the path of the infrared fluorescence/laser
light. (See Figure 3.1)
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reflections). Lasing readily results upon proper alignment. Lasing was tuned to 820-830

nm via prism and slit adjustments, with 300 mW of average power routinely achieved.

830nm was selected as a balance between three objectives: (1) maximizing the simultaneous

fluorescence of Rhodamine Green, Texas-Red, Green Fluorescent Protein (GFP), and Red

Fluorescent Protein (RFP) (see Sec. 3.2.2); (2) autofluorescence and phototoxicity in live

cells is relatively low at this wavelength182 and (3) this wavelength is within the window

of what is achievable with the laser cavity optics set available to me (730-850nm). 920 nm

may be the optimal compromise between fluorescence excitation of multiple fluorophores

and biological sample transparency.

The Ti:Sapph laser was operated in “mode-locked” configuration,236 established by

propagating an intensity perturbation. In practice, I caused this perturbation by jittering

the prism closest to the HR mirror. The Ti:Sapph crystal is a non-linear optical medium

in which a “Kerr lens” can form in response to such a perturbation. This optical Kerr lens

causes the laser beam to self-focus in a manner that phase-aligns the cavity modes of the

laser, resulting in spatio-temporal coherence of photons. This coherence is amplified by

every pass through the Ti:Sapph crystal until femtosecond pulses with ultra-high photon

densities (∼ 1028 photons/pulse) result. The temporal pulse width is ultimately limited

by the intrinsic dispersion of optical elements in the laser path. Shown in Figure 3.5 are

emission spectra of the laser tuned to ∼820 nm and operated in continuous-wave (CW)

mode (before intensity perturbation) and in mode-locked (ML) configuration, measured

using a fiber-optic coupled spectrophotometer from Ocean Optics Inc. (Dunedin, FL). Using

Heisenberg’s Uncertainty Principle, ∆E∆t ∼ ~, a 50 fs pulse width for the ML laser was
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Ti:Sapph spectrum: continuous wave Ti:Sapph spectrum: mode-locked

Figure 3.5: Ti:Sapph laser spectrum. Top, spectrum for laser operated in CW mode.
Bottom, spectrum for laser in mode-locked configuration.

deduced based on the full-width-half-max of the spectral output. This pulse width refers to

the laser prior to entering the microscope objective and other dispersive optical elements

associated with the microscope. Although not measured directly at the sample,181 the pulse

width after the microscope objective lens is likely ∼100 fs; this values seems independent of

the pulse width before the objective (personal communication, Magnus Bengtsson, Spectra

Physics Inc., Santa Clara, CA)

3.2.2 Fluorophores and Filters

Rhodamine Green (excitation maximum: 504 nm; emission maximum: 532 nm) and

Texas-Red (excitation maximum: 588 nm; emission maximum: 601 nm) were chosen as

TCFFM dye pairs based on the optimization of three criteria: (1) the similarity of spectral

properties with GFP and RFP, respectively; (2) high quantum yields with limited photo-
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RG 

emission

TR 

emission

Figure 3.6: TCFFM secondary filter transmission properties. Dichroic spectrum
is shown in yellow, green channel filter in green, and red channel filter in red. Spectra
of Rhodamine Green (RG, green, bold dashed), Texas Red (TR, red, bold dashed), and
Rhodamine Green- and Texas Red-labeled oligonucleotides (green thin dashed and red thin
dashed, respectively) are overlaid for comparison. Samples were prepared in PBS.

physical dynamics and resistance to photobleaching;103 and (3) a good separation of emission

spectra to minimize cross-fluorescence signal detection.

The secondary dichroic with green/red filters in Figure 3.1, were custom designed in

conjunction with Chroma Technologies, Inc. (Brattleboro, VT) to maximize collection and

separation of fluorescence from Rhodamine Green and Texas Red (dichroic: 590dxcr; green

filter: HQ530-60m; red filter: HQ653-95m). The transmission properties of these optics are

shown in Figure 3.6, with the emission spectra of the dyes and dye-labeled oligos overlapped
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(see Sec. 3.2.3).

3.2.3 Sample Preparation

Rhodamine 6G (R6G; R-634), Rhodamine Green (RG; R-6107), and Texas Red (TR;

T-353) dyes were purchase from Molecular Probes/Invitrogen (Carlsbad, CA). Dual HPLC-

PAGE purified fluorophore labeled oligonucleotides (5’-RG-X-d(ACTCATAGATC), 5’-TR-

X-d(GATCTATGAGT), and 5’-d(ACTCATAGATC)-X-RG-3’, where “X” is an aminohexynoyl

spacer) were purchased from Integrated DNA Technologies (Coralville, IA). Oligo samples

were prepared as 100 µm stock solutions with NANOpure water (Barnstead International,

Dubuque, IA) or Phosphate Buffered Saline (PBS) using low-retention siliconized pipet tips

and observed in 8-well LabTek II Chambered Coverslips (see Sec. 3.2.1). Oligo stock solu-

tions were serially diluted by a factor of 3 down to 5 nM (ninth serial dilution).

Green Fluorescent Protein (S65T mutant) was expressed in Escherichia coli BL21(DE3)

and purified by nickel chromatography. Red Fluorescent Proteins (dsRed, tdimer2, mRFP)

and Green Fluorescent Protein-FKBP and -FRB chimeras (YFP-FKBP, CFP-FRB) were a

gift from Kurt Thorn (Bauer Center for Genomics Research, Harvard University, MA). All

protein solutions were prepared using PBS.

3.3 Results and Discussion

3.3.1 Focal Volume and Fluorophore Characterization

The TCFFM apparatus was calibrated and characterized using Rhodamine 6G (R6G);

Figure 3.7 shows the auto- and cross-correlation function curves for the set-up. Non-linear
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Figure 3.7: TCFFM calibration using Rhodamine 6G. Left, auto-correlation (red and
green) and cross-correlation (yellow and blue) curves and residual plots (top) for a dilute
solution of R6G. Right, expanded view of the correlation data. Data is an average of three
60 s acquisitions. Non-linear least squares fitting to a diffusion-only model yields an average
number of particles per focal volume of 15.95± 0.03, a characteristic diffusion time through
the focal volume of 28.9±0.3 µs, and a volume characterized by a κ = 6.4±0.3 aspect ratio.
See text for further details.



60

least squares fits of the data were performed using IGOR Pro (Wavemetrics Inc., Lake Os-

wego. OR), assuming a 3-dimensional Gaussian ellipsoidal focal volume and the following

diffusion-only model for the correlation functions:

Gxy(τ) =
1

N
(1 + τ/τD)−1 (1 + τ/κ2τD

)−1/2
(3.1)

where N is the average number of particles in the focal volume, τD is the characteristic

diffusion time through the focal volume, and κ is the aspect ratio of the ellipsoid volume.

The focal volume is given as V =
(

π
2

)3/2
κw3

r , where wr is the characteristic radial (xy-)

waist of the ellipsoid. Using the reported diffusion coefficient for R6G of 280 µm2/s212

and the relation of the radial waist to the diffusion coefficient for 2-photon illumination of

wr =
√

8Dτd,170 I computed the effective focal volume to be 0.21 fL.

Figure 3.6 shows sample spectra for Texas Red and Rhodamine Green labeled DNA

oligos measured in PBS. Spectra for the fluorescent proteins studied are shown in Figure

3.8 and Table 3.1 summarizes the brightness and bleed-through fluorescence properties for

these proteins. Rhodamine Green has a significant fluorescence bleeding of 13.5% into the

red filter channel. In contrast, Texas Red is well isolated, with less than 1% bleed-through

in the green channel. The S65T mutant of GFP has about half the red fluorescence bleed-

through as Rhodamine Green and is nearly 2 times brighter. The red fluorescent protein,

dsRed, has comparable properties to S65T, though in the red channel. However, dsRed is

known to be non-covalently tetrameric,27 which is consistent with tdimer2 (a dimer of 2

monomers) and mRFP (monomeric red fluorescent protein) having visibilities that are 1/2

and 1/4 of dsRed, respectively. Homo-FRET processes among monomeric RFP units are

known to occur, with the possibility of dsRed monomers existing in a green fluorescence
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Figure 3.8: Spectra for fluorescent proteins overlaid with the TCFFM secondary
filter transmission properties. Cf. Figure 3.6. CFP-FRB is a Cyan Fluorescent
Protein:FKBP-rapamycin-binding-protein chimera. S65T GFP is the main mutation in
the Enhanced Green Fluorescent Protein which is commercially available. YFP-FKBP is
a Yellow Fluorescent Protein:FK506-binding-protein chimera. dsRed was one of the first
isolated Red Fluorescent Proteins and exists and a homo-tetramer. tdimer2 is a mutated
version of dsRed which forms convalent dimers of dsRed monomers. mRFP is a monomeric
version of dsRed.
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Fluorophore η (kHz/molecule) Green bleed-through Red bleed-through

Rhodamine 6G (R6G) 8.9 (3.2) – 36%
Rhodamine Green (RG) 1.9 – 13.5%

Texas Red (TR) 3.2 0.56% –
S65T GFP 3.6 – 5.3%
dsRed RFP 2.5 6.7% –

tdimer2 RFP 1.1 10.4% –
mRFP 0.5 2.1% –

CFP-FRB 0.54 – 9.4%
YFP-FKBP 0.23 – 10.4%

Table 3.1: Visibility (specific brightness) and bleed-through fluorescence for fluo-
rophores and fluorescent proteins studied with two-photon excitation at 830 nM
(average power ∼40 mW). Visibility of Rhodamine 6G in the green channel is shown
with the value in the red channel in parentheses. See Figure 3.8 for fluorescent protein
descriptions

state upon excitation;79,162, 248 this may explain the differences in green channel bleed-

through between dsRed, tdimer2, and mRFP. Under two-photon excitation with &50 mW

average power, I have observed unusual anti-correlated cycling of red and green fluorescence

emission from dsRed samples (data not shown), indicating a complex photocycle. Given

this, mRFP is the recommended red fluorescent protein form to use for cellular/protein

labeling. Unfortunately, its photic output is relatively low, and tuning of the current RG/TR

secondary filter set and/or excitation wavelength will likely be needed for optimal TCFFM

experiments using mRFP. Cyan fluorescent protein (CFP) and yellow fluorescent protein

(YFP) also have low visibility values, and have about 10% bleed-through fluorescence in the

red.

Shown in Figure 3.9 are auto-correlation results for some of the fluorescent proteins

in Table 3.1. S65T-GFP and dsRed were quite robust using the current instrument set-up.

As mentioned above, however, dsRed is tetrameric and this fact motivated measurements
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S65T-GFP dsRed

tdimer2

mRFP

CFP-FRB

correlation time (s)

YFP-FKBP

correlation time (s)

1+G(τ)

1+G(τ)

1+G(τ)

Figure 3.9: TCFFM auto-correlation curves for fluorescent proteins in Table 3.1.
Auto-correlation data (averages of three 60 s acquisitions) were non-linear least-squares
fitted using Eq. 3.1, with N (particle number), τD (characteristic time), and a correlation
offset as variables. κ (focal volume aspect ratio) was constrained to be 6.3 based on focal
volume measurments with R6G (cf. Figure 3.7). Residuals of the fit are shown above the
correlation functions curves. S65T-GFP, CFP-FRB, and YFP-FKBP data were measured
in the green channel; dsRed, tdimer2, and mRFP data were measured in the red channel.
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on tdimer2 and mRFP. tdimer2 yielded correlation data that was consistently difficult to fit

using a diffusion-only FFM model, suggesting that monomer-monomer photophysics may

be interfering with these measurements. In contrast, mRFP correlation data was fit well

with Eq. 3.1, although its low visibility compromised correlation function signal-to-noise.

Likewise, the YFP-FKBP and CFP-FRB data were fit well by a diffusion-only model, though

the data was noisier due to a low visibility.

To establish the feasibility of TCFFM, I sought to study a model 2-component in-

teracting system with well defined interaction thermodynamics. I settled on using non-

complementary DNA oligonucleotides whose association thermodynamics can be reliably

predicted and controlled by buffer conditions, notably ionic strength. Below, I present some

preliminary qualitative TCFFM data for the association of two non-self-complementary

undodecamers, d(ACTCATAGATC) and d(GATCTATGAGT). This sequence pair was de-

signed to minimize self-complementarity, balance purine:pyrimidine base composition, and

exhibit a Kd on the order of tens of nM at room temperature in PBS (see below). As ex-

plored in Chapter 2, a Kd in the nM range would be appropriate for initial TCFFM studies

of association-dissociation thermodynamics.

3.3.2 d(ACTCATAGATC):d(GATCTATGAGT) Association

Using the nucleic acid hybridization prediction program HyTher,195 I estimated

the Kd for the pair d(ACTCATAGATC):d(GATCTATGAGT) in PBS ([Na+] = 0.16 M,

[Mg2+] = 0 M) to be ∼ 13 nM at room temperature (23 ◦C). In Figure 3.10, a schematic of

the 3 fluorescently-labeled non-self-complementary strands used in this section are shown.

Strands 1:2 and 2:3 are complementary, with strands 2:3 expected to exhibit significant
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Figure 3.10: Schematic of the fluorescently labeled DNA oligonucleotide strands
studied.

FRET due to fluorophore proximity. TCFFM correlation results for these strands is show

in Figure 3.11. At zero ionic strength, strand 1 and 2 are predicted to not associate, due to

charge repulsion of the DNA phosphate backbones of complementary strands. The cross-

correlation of green and red channels, Gxy(τ), is expected to be zero and is essentially the

case in the experiment (left, Figure 3.11). There is a slight non-zero cross-correlation signal

that is attributable to ∼14% bleed-through fluorescence of RG into the red channel (cf.

Table 3.1). In PBS, strands 1 and 2 are expected to associate, and in Figure 3.11 (middle),

a significant cross-correlation amplitude can be seen. Strands 2 and 3 also are expected to

associate in PBS, although fluorophore labels are expected to undergo FRET. The cross-

correlation between these strands is essentially zero (right, Figure 3.11), highlighting the

compromising effects of FRET on cross-correlation amplitudes that were theorized in Chap-

ter 2, Section 2.5.3. Moreover, the auto-correlation functions are correspondingly higher,
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Figure 3.11: TCFFM results for the fluorescently-labeled d(ACTCATAGATC)
: d(GATCTATGAGT) oligos. See Figure 3.10 for strand definitions. Green and red
curves are auto-correlation results from the green channel (RG label) and red channel (TR
label), respectively. Cross-correlation curves (green channel × red channel and red channel
× green channel) are shown in yellow and cyan; these cross-correlation curves are identical
within statistical noise. The final concentration of strands nominally used was 100 nM.

which is also expected in the presence of FRET (cf. Figure 2.7). It should be noted that

the total concentration (complexed and free) of strands 1 and 2 was ca. 100 nM, an order of

magnitude higher than the predicted Kd for the complex; this shifts the equilibrium towards

the formation of a duplex (cf. Section 2.5.3 and Figure 2.7B). In the presence of FRET,

cross-correlation amplitudes would be lower, making it appear as if fewer complexes are

formed. Returning to the cross-correlation results of strands 1 and 2, the observed cross-

correlation amplitude is smaller than would be expected due to the presence of FRET. Even

though fluorophores are at opposite ends of the duplex, bulk fluorescence measurements

suggest that FRET occurs with an efficiency of ∼25% as shown in Figure 3.12.
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Figure 3.12: Fluorescence spectra of labeled DNA strands in zero vs. high
ionic strength solutions, demonstrating FRET in the complex. Excitation spec-
tra were taken by monitoring emission at 650 nm and sweeping over excitation wave-
lengths. Spectra of equimolar strand 1 (5’-RG-d(ACTCATAGATC)) and strand 2 (5’-TR-
d(GATCTATGAGT)) in water (zero ionic strength) or in high salt (1.5 NaCl, 0.3 M MgCl2)
are shown in yellow or cyan, respectively.
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3.3.3 Outlook

The development of a high-precision TCFFM instrument and the pilot qualitative

experiments described on non-self-complementary oligonucleotides set the stage for quan-

titative studies of two-component interacting systems. The effects of FRET, fluorophore

bleed-through, and background fluorescence on correlation function data need to be quan-

tified and validated with respect to the theory established in Chapter 2. This is necessary

in order to determine particle numbers and thus the Kd for the two interacting compo-

nents. Below, I outline an approach to determine these particle numbers and the required

calibration protocols.

Using Eqs. 2.5 and 2.6, we may express the general TCFFM correlation function as

follows:

Gxy(τ) =
m∑

i

m∑

j

ηx
i ηy

j

√
N iN j

(∑m
i ηx

i N i + bx
)(∑m

j ηy
j N j + by

) · hij(τ) (3.2)

where i indexes a component of an m-component system, ηx
i is the specific brightness (counts

per sec / molecule) in channel x or component i, N i is the average number of particles of

component i, bx is the background fluorescence registered in channel x, and hij(τ) is the

component correlation function (see Eq. 2.6 and Section 2.7). Although it is ideally more

robust to fit over a range of time-lags, τ , hij(τ) typically is not easily separable from the

double summation term unless the diffusion coefficient for all components in the system are

identical (cf. Eq. 2.20 and Section 2.7).

For the bimolecular reaction, A + B
kaGGGGGGBFGGGGGG
kb

C, with 3 components of comparable
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diffusion coefficients, Eq. 3.2 may be expressed more specifically as:

Gxy(τ) =
3∑

i

3∑

j

ηx
i ηy

j

[
δijN i + γ

(∑3
k N

−1
k

)−1 (
eτ/τreac − 1

)]

(∑3
i ηx

i N i + bx
)(∑3

j ηy
j N j + by

)

×
(

1 +
τ

τdiff

)−1(
1 +

τ

κ2τdiff

)−1/2

(3.3)

where I have assumed a 3-dimensional Gaussian ellipsoidal focal volume, γ is +1 for reac-

tants, A and B (component 1 and 2 respectively), and -1 for the complex, C (component

3), τreac is the characteristic time for reaction, τdiff is the characteristic time for diffusion,

and κ is the focal volume aspect ratio (see Eq. 2.20). I assume κ has been determined

independently and previously, since it is specific to the TCFFM apparatus. Eq. 3.3 may be

used to fit correlation function data to simultaneously to determine τreac, τdiff , NA, NB ,

and NC along with the set of calibration parameters ηx
A, ηy

A, ηx
B , ηy

B , ηx
C , ηy

C , bx, and by.

This amounts to 8 calibration unknowns for a given TCFFM setup (I assume background

fluorescence in this case is not sample specific) and 5 experimental unknowns, or a total

of 13 unknowns for simultaneous fitting. Each correlation function dataset can provide an

equivalent of 4p equalities in which to satisfy (where p is the number of τ -lag time points

acquired for the correlation function): two auto-correlation functions, Gxx(τ) and Gyy(τ),

and two cross-correlation functions, Gxy(τ) and Gyx(τ). A direct global fit using Eq. 3.3

may be possible given the amount of data/equalities (4p · n) per dataset (n) relative to

unknowns (8 + 5n) However, given that the data points per correlation function, p, are

derived from the same parent correlation function equation, they may be highly correlated

and thus compromise a robust simultaneous fit over the high-dimensional space of unknown

parameters, especially in the presence of statistical noise. A more thorough analysis of such
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a global fitting strategy requires further consideration and experimental testing. Perhaps a

more tractable solution would be to reduce the number of unknown parameters per dataset

by measuring them independently. The simplified relation relating correlation function am-

plitudes to the parameters of particle number, bleed-through, and background fluorescence

obtained in the τ = 0 limit may also be used instead:

Gxy(0+) =

3∑

i

ηx
i ηy

i N i(∑3
i ηx

i N i + bx
)(∑3

i ηy
i N i + by

) (3.4)

(Eq. 3.4 must be used instead of Eq. 3.3 in cases where hij(τ) is not separable from the

double sum in Eq. 3.2.) In this case, the need to fit τreac and τdiff has been circumvented,

though at the cost of p→ 1 data points per correlation function dataset.

The number of unknowns for a given dataset (13 for Eq. 3.3 and 11 for Eq. 3.4) may

be reduced immediately by 2 by simply measuring the steady-state background fluorescence,

bx and by, under data-acquisition conditions without the presence of A, B, or C (e.g., using a

buffer blank). The calibration variables, ηx
A, ηy

A, ηx
B and ηy

B , may then be determined by sep-

arate correlation function measurements of single-species-only samples over a concentration

dilution series by globally fitting to the following set of equations:

G1−species, i
xx (τ) =

(ηx
i )2 N i(

ηx
i N i + bx

)2 ·H(τdiff, τreac, κ, τ)

G1−species, i
yy (τ) =

(ηy
i )

2
N i(

ηy
i N i + by

)2 ·H(τdiff, τreac, κ, τ)

G1−species, i
xy, yx (τ) =

ηx
i ηy

i N i(
ηx

i N i + bx
) (

ηy
i N i + by

) ·H(τdiff, τreac, κ, τ) (3.5)

where the underscore, · , is use to denote that a variables is known or has been determined

independently and H(τdiff, τreac, κ, τ) ,
(
1 + τ

τdiff

)−1 (
1 + τ

κ2τdiff

)−1/2
. For a dilution

series with q samples and p τ -lag time points, 3 parameters remain constant over the con-
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centration range (τdiff , ηx
i , and ηy

i ), 2q parameters are variable (τreac and N i), and 4p · q

correlation function data points are to be used for parameter fitting (2 auto-correlation and

2 cross-correlation functions). Considering a worst-case scenario for the moment, with p = 1

(e.g., treating only correlation function amplitudes) and access to only one cross-correlation

function, there are 3+2q unknowns and 3q equality relations. This sets a conservative min-

imum of qmin = 3 number of dilution datasets that would be necessary for estimating the

bleed-through parameters, ηx
A, ηy

A, ηx
B and ηy

B . If both forward and reverse cross-correlation

data are available, this minimum would drop to qmin ∼ 2. Of course, this aforementioned

assessment assumes statistically noise-free data. As discussed in Chapter 2, each correla-

tion function time point has an associated error dependent upon acquisition time, visibility,

lagtime, etc. (cf. 2.19 and Saffarian and Elson (2003)219). A more thorough analysis of the

effects of statistical noise on parameter estimation ability would be beneficial. Nonetheless,

using p τ -lag time points should help leverage the statistical uncertainty associated with

each data point with an over-determined number of correlation function equalities.

The estimation of bleed-through parameters, ηx
A, ηy

A, ηx
B and ηy

B may be further

constrained if the dilution factors for the series of samples is known. Substituting N i →

υqN i, where υq is the experimental dilution factor for sample dilution q :

G1−species, i
xx (τ) =

(ηx
i )2
(
υqN i

)

(
ηx

i

(
υqN i

)
+ bx

)2 ·H(τdiff, τreac, κ τ)

G1−species, i
yy (τ) =

(ηy
i )

2
(
υqN i

)

(
ηy

i

(
υqN i

)
+ by

)2 ·H(τdiff, τreac, κ, τ)

G1−species, i
xy, yx (τ) =

ηx
i ηy

i

(
υqN i

)

(
ηx

i

(
υqN i

)
+ bx

)(
ηy

i

(
υqN i

)
+ by

) ·H(τdiff, τreac, κ, τ) (3.6)
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In this case, 4 parameters remain constant over the concentration range (τdiff , ηx
i , ηy

i , and

N i) and only q parameters are variable (τreac), reducing the number of unknowns by q − 1

compared to Eq. 3.5.

Unfortunately, for the DNA oligonucleotide experiments I describe above, I have

found estimating bleed-through parameters using Eq. 3.6 to be difficult due to experimen-

tally uncertainties in υq. The polystyrene walls of the Nunc chambered-coverslips used led to

significant and unpredictable adherance problems with the labeled DNA oligonucleotides at

concentrations below 1 µM. Future quantitative studies may attempt an estimation of bleed-

through parameters using the more general Eq. 3.5. Alternatively, studies may use sample

chambers with proven low-retention properties such as those I have subsequently identified

(e.g., AssayChip, MicroCarrier microplates) by Evotec Technologies Inc. (Woburn, MA).

After determining the bleed-through parameters for each single species, 2 remaining

calibration parameters remain: ηx
C and ηy

C , for the complex. These may be computed using

Eq. 2.29, and if FRET is present, the energy transfer efficiency, E, may be determined by

standard means.109,145 Alternatively, these may be measured as detailed above, if doubly

labeled complex can be exclusively formed and studied (e.g., labeled half-length oligos with

excess unlabeled, complementary full length oligo).

Having determined all the necessary calibration parameters, the absolute particle

numbers for A, B, and complex C may be deduced given an set of correlation function

amplitudes by fitting with Eq. 3.4; in this case, we have essentially the same number

of unknowns as correlation function equalities. The precision of such a fit is limited by

the quality of estimating the intercept correlation function amplitude, though this can be
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Figure 3.13: Proposed heterodimeric leucine zipper for in vitro and in vivo

TCFFM studies. Derived from the chicken vitellogenin binding protein (VBP), this
leucine zipper preferentially heterodimerizes with a Kd ∼ 7 nM while homodimerization
is weak (Kd ∼ 10 − 100 mM).135,143, 144 GFP fusions to these zippers have been expressed
successfully in mammalian cells and appear to interact minimally to cytoplasmic compo-
nents. Fluorescent proteins may be fused to either side of the zipper motifs.

improved by averaging multiple measurements for the same sample. The classic dissociation

constant for the bimolecular reaction is then given by:

Kd =
NANB

NC

(navoV )−1 (3.7)

where navo is Avogadro’s number and V is the focal volume. Importantly, the Kd can be de-

termined from a single sample, without the need for a titration series.138,173, 199, 208, 226, 234, 249

In this way, TCFFM offers a unique methodological approach for measuring equilibrium con-

stants.

Ultimately, this methodology should be developed and applied to quantify bimolec-

ular interactions of proteins in live cells. Two model interacting systems that I believe

may be worth pursuing towards this end are: (1) FKBP (FK506 binding protein) and FRB

(FKBP-rapamycin binding domain) and (2) heterodimeric leucine zippers. FKBP and FRB

bind over a range of nanomolar affinities depending on the concentration of the bifunctional

ligand rapamycin.7 The heterodimeric leucine zipper studied extensively by Charles Vin-

son’s lab at the NIH and shown in Figure 3.13 also has affinities in the nanomolar range

that can be tuned by ionic strength.135,143, 144 Both systems can be expressed as fusion
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proteins to fluorescent proteins and I have been successful in cloning and expressing fluo-

rescent chimeras (CFP:YFP or S65T-GFP:mRFP fluorescent protein pairs) for both these

systems in bacterial, yeast, and mammalian tissue culture cells. This sets the stage for both

in vitro biochemical validation experiments and in vivo measurements using TCFFM. A

comparison of in vitro conditions and the milieu of a living cell on the thermodynamics of

such interacting systems would greatly enhance our understanding of the physico-chemical

basis for cellular metabolism and intracellular signaling.
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Chapter 4

Simulations

A version of this chapter has been accepted for publication in the Journal of Physical

Chemistry-B by James A. Dix, Erik F. Y. Hom and Alan S. Verkman as:

“Fluorescence Correlation Spectroscopy Simulations for Analysis of Photophysical Phenom-

ena and Molecular Interactions: A Molecular Dynamics/Monte-Carlo Approach.”
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4.1 Abstract

We developed a general approach to simulate fluorescence fluctuation microscopy

(FFM) experimental data. In FFM, fluctuations in detected fluorescence, δF (t), are ex-

pressed as time-correlation functions, G(τ), and photon-count histograms, P (k;∆T ). We

computed G(τ) and P (k;∆T ) for binary component diffusing systems with arbitrary geom-

etry, photophysics, diffusion, and macromolecular interactions. These G(τ) and P (k;∆T )

were derived from δF (t) traces generated by Brownian dynamics simulation of single molecule

trajectories followed by Monte-Carlo simulation of fluorophore excitation and detection

statistics. Simulations were validated by comparing analytical and simulated G(τ) and

P (k;∆T ) of non-interacting diffusing fluorophores in a three-dimensional Gaussian excita-

tion and detection volume. Inclusion of photobleaching and triplet-state relaxation produced

significant changes in G(τ) and P (k;∆T ). The method was applied to study macromolecu-

lar interactions, including fluorophore binding to an immobile matrix, fluorophore diffusion

in crowded media, cross-correlation analysis of interacting fluorophores, and anomalous sub-

and super-diffusion. The computational method developed here is generally applicable for

simulating FFM measurements on systems complicated by fluorophore interactions, macro-

molecular crowding, and experimental protocols for which G(τ) and P (k;∆T ) cannot be

computed analytically.

4.2 Introduction

Fluorescence fluctuation microscopy (FFM) is being applied increasingly to study dif-

fusive phenomena and macromolecular interactions in complex systems, including aqueous
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and membranous compartments in living cells.5,257, 266 Typically, fluorescence intensity in a

detection volume, F (t), is monitored over time. Fluctuations in F (t) are produced by kinetic

processes that alter the number and/or intrinsic fluorescence of molecules in the detection

volume. The fluorescence time course thus contains information about molecular diffusion

and/or photophysical and chemical dynamics. The FFM approach has been used most

widely to measure fluorophore diffusion coefficients and concentrations,66,161 though many

other biologically-relevant phenomena are in principal measurable including fluorophore ro-

tation,3,133 surface adsorption dynamics,243 and fluorophore binding interactions.20,107, 116

Although all information in an FFM measurement is contained in F (t), derived func-

tions are computed to extract useful information from F (t). The commonly used derived

functions are the time-correlation function G(τ),65,161 and the photon-count histogram,

P (k;∆T ).32,132 where k represents the number of photons in a time interval ∆T . G(τ)

characterizes the temporal memory of the fluorescence signal, while P (k;∆T ) characterizes

the static distribution of fluorescence intensities over a specified time interval. Analytical ex-

pressions for G(τ) have been obtained for a few simple situations involving simple Brownian

diffusion of fluorophores with a Gaussian detection volume with and without triplet-state

photophysics264 and fluorophore binding to a relatively immobile substrate.208 Deviations

from these analytical G(τ) cases have been noted or are anticipated for anomalous dif-

fusion,56,100, 231 confined diffusion,82 non-Gaussian detection volumes,13,104 large diffusing

particles compared to detection volume,241 fluorophore photobleaching,6,60, 265 and Förster

resonance energy transfer.107,267 Expressions for P (k;∆T ) have been obtained for Brownian

fluorophore diffusion.32,131 The influence of triplet-state photophysics and other non-ideal
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conditions mentioned above on P (k;∆T ), however, has not been investigated.

Measurements in cellular systems are complicated by geometric and phase hetero-

geneities that produce confined diffusion within organelles and/or macromolecular crowd-

ing. Molecular crowding by fixed and mobile obstacles can dramatically alter particle dif-

fusion and interactions through excluded volume effects and spatial organization.1,95, 175, 273

We have used photobleaching methods extensively to characterize the diffusion of macro-

molecules in cellular compartments,256 and have developed analytical and computational

methods to deal with complex diffusive behavior192 and organellar geometry.49,185 In prin-

ciple, FFM measurements contain greater information content about diffusive and reaction

dynamics than fluorescence recovery after photobleaching, in part because single molecule

events are recorded over many orders of magnitude of time.

We establish a general approach to simulate FFM data for complex systems. The

motivation for this work was the need to extract quantitative information on diffusion and

binding from FFM measurements on living cells. The computational method involves Brow-

nian dynamics simulation of particle trajectories followed by Monte-Carlo simulation of

fluorescence statistics. The G(τ) and P (k;∆T ) derived functions are computed from the

simulated F (t). The simulation approach was validated and applied to examine the effect

of photophysical phenomena and intermolecular interactions on G(τ) and P (k;∆T ).
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4.3 Methods

4.3.1 Overview

The simulation of an FFM measurement was conducted in 3 stages: (a) generation

of molecular trajectories; (b) generation of detected fluorescence time course, F (t), based

on the molecular trajectories; and (c) computation of G(τ) and P (k;∆T ) from F (t) (Fig-

ure 4.1 A and B). Computations for each stage were handled independently of the other

stages. Molecular trajectories were generated by Brownian dynamics simulations using the

GROMACS molecular dynamics package.157 The trajectories were filtered through a fluo-

rescence statistics module to generate F (t), which was stored efficiently as a list of photon

arrival times. F (t) was processed to generate G(τ)and P (k;∆T ) using an algorithm based

on the photon arrival times. As discussed below, the simulations utilized different timescale

intervals: dt, for the Brownian dynamics time step; δt, for the time interval over which

fluorescence is calculated from the molecular trajectories to generate F (t); and ∆t, for the

minimum bin time used for the generation of G(τ). In general, dt ≤ δt ≤ ∆t, where δt and

∆t are integer multiples of dt.

4.3.2 Brownian dynamics simulations

A system of molecules evolving by Brownian dynamics in an isotropic highly-damping

hydrodynamic fluid is described by the modified Langevin equation: dri/dt = Fi/γi + δi

where ri is the position of molecule i, Fi is the force acting on the molecule, γi is the

friction coefficient of the molecule in the hydrodynamic fluid, and δi is a randomly varying

force.30 This equation was integrated using the GROMACS package157 to obtain: dri =
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Figure 4.1: Simulation method. (A) Simulations were done in three steps: computation
of Brownian dynamics trajectories using GROMACS software; computation of fluorescence
time courses using custom software; and computation of correlation functions and photon
count histograms from photon arrival times. (B) Brownian dynamics trajectories were
generated to give coordinates of a collection of molecules in a periodic box. The number of
molecules within a sub-volume of the box at each time, NV , was computed. A fraction of
these molecules, Nex, were excited, and a fraction of the excited molecules emitted photons,
generating a fluorescence time course, F(t) and photon count histogram, P(k). (C) key
diagramming the different time step intervals used in the simulation and data analysis. (D)
key diagraming the relationship between the excitation time t′ and query time, in units of
the fluorescence query time interval, δt. (E) Photon arrival time (PAT) format. Given a
user defined time bin, ∆t, fluorescence photon counts are stored as a data pair: the first
element is the number of empty bins, b, separating bins containing photons, and the second
element is the number of photons, k, within the latter bin. Shown in the figure is the entry
(3,1). The dashed lines demonstrate that b = 3 and the single photon at the end of the
dashed lines indicates k = 1, forming the entry (3,1).
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(Fi/γi) dt+
√

2kBT (dt) /γiδ0, where kB is Boltzmann’s constant, T is absolute temperature,

dt is the simulation time step, and δ0 is a Gaussian-distributed random number with average

zero and standard deviation 1. The uniform random number generator in GROMACS was

replaced by the program ran2 of Press et al. (1996)203 (with a random number generation

period of ∼ 1018), and the Gaussian transformation was replaced by the program gasdev of

Press et al. (1992a).202 The GROMACS-parameterized friction coefficient, γ, was calibrated

by simulating a system of identical spherical particles of known mass and radius a, and

comparing the diffusion coefficient from the simulation, Dsim ,
〈
r2
〉
/6t, with the diffusion

coefficient calculated from the Stokes-Einstein equation, DSE , kBT/6πηa. The friction

coefficient varied with mass of the particle.

Intermolecular forces between the atoms i and j, Fij, were estimated by Lennard-

Jones potentials: Fij(rij) , Aij/r
12
ij −Cij/r

6
ij , where rij is the distance between atoms i and

j, and Aij and Cij are particle-specific coefficients governing the strength of the interaction.

Electrostatic interactions were ignored. For most simulations reported here, Cij = 0, yielding

a collection of Lennard-Jones repulsive spheres. For crowding simulations, the repulsion was

made softer by adding terms with Cij < 0. For specified Aii and Cii, the effective length of

the potential (and thus the effective radius of the particle) was operationally defined as the

distance at which the potential reached kBT . To simulate binding of a fluorophore to a large

immobile object, the spatial coordinates of the fluorophore were frozen for a specified length

of time. Whether binding occurs and the length of time remaining bound were specified in a

Monte Carlo fashion with constant probability characterized by two time constants, τon and

τoff ; these correspond to the reciprocal pseudo-first-order forward and reverse rate constant
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for binding, respectively.

In a typical simulation, the trajectory of 1000 molecules, whose initial positions were

chosen at random, was computed in a 10×10×10 µm box with periodic boundary conditions

and no pressure coupling (equivalent concentration 1.7 nM). All simulations were run at 300

◦K. The system was typically equilibrated by a run of 3 s, followed by a production run of

1 s. The time step was set to 1-200 ns and chose to be the smallest value yielding a steady

potential energy throughout the simulation, without large energy spikes. The GROMACS

software was compiled and run on 2.8 MHz Pentium 4 computer running Linux emulation

software on Windows XP. Dynamics for low particle concentrations were generated at a

rate of ∼ 2 × 106 steps/hr for a 2.8 MHz Pentium 4 machine. Simulations at high particle

concentrations were run on the Xeon cluster at the National Center for Supercomputer

Applications at the University of Illinois, Urbana-Champaign.

4.3.3 Fluorescence statistics

F (t)was calculated from the Brownian dynamics trajectories according to:

F (t) =

N∑

i=1

[∫ t

t′
pex(r

′

i, ω
′

i; t
′

) · pph(ri, ωi; t|r
′

i, ω
′

i; t
′

) · pem(ri, ωi; t) ·Qdet(ωi) δt
′

]
(4.1)

where N is the number of molecules; pex(r
′

i, ω
′

i; t
′
) is the probability that molecule i at po-

sition r
′

i with orientation ω
′

i is excited at time, t
′
; pph(ri, ωi; t|r

′

i, ω
′

i; t
′
) is the conditional

probability that a molecule excited at time t
′

undergoes a photophysical conversion by a

later time t; pem(ri, ωi; t) is the probability that a molecule subsequently emits a photon; and

Qdet(ωi) is the quantum yield of detecting emitted photons from a molecule in orientation

ωi (assuming negligible time to detection). For the simulations described here, the quantum
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yield of photon detection will be assumed to be independent of the polarization of emitted

photons and thus molecular orientation: Qdet(ωi) ∼ Qdet. The bracketed integral in Eq. 4.1

is computed in units of δt, the fundamental fluorescence query interval. Each of the condi-

tional probability terms as used in the simulations is defined explicitly below. Generation

of the fluorescence trace, F (t), and calculations of G(τ) and P (k;∆T ) were implemented in

Compaq Visual FORTRAN 90 (source code available from J. Dix).

4.3.3.1 Molecular excitation

The probability molecule i is excited at a time t
′
can be expressed as:

pex(r
′

i, ω
′

i; t
′

) = pS0
(i) · ǫ(ω′

i) · Iapp(r
′

i) (4.2)

where pS0
(i) is the probability (0 or 1) that molecule i is in the ground state (S0) (available

for excitation), ǫ(ω) is the orientation-dependent absorption probability per unit time, and

Iapp(r) is the normalized apparent excitation profile. Here, we follow the convention of

Rigler et al. (1993),212 in using for the convolution of the excitation intensity profile and the

detection efficiency profile (cf. Hong and Elson (1991)108 and Schwille et al., (1999a)232). For

the simulations presented here, rotational correlation times were assumed to be much faster

than the Brownian dynamics time step, permitting replacement of ǫ(ω) by an orientationally-

averaged ǫ. For a 3-dimensional Gaussian, Iapp(r), the excitation probability of molecule i

at position ri = (xi, yi, zi), is then:

pex(r
′

i, ω
′

i; t
′

) = pS0
(i) · ǫ · exp

[
−
(

(xi − x0)
2 + (yi − y0)

2 + ((zi − z0) /κ)2

2w2
xy

)]
(4.3)

where wxy is the standard deviation of the Gaussian profile in the radial direction centered

at (x0, y0, z0), κ = wz/wxy, and wz is the standard deviation of the Gaussian profile in
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the axial direction. For each fluorescence query interval, δt, Eq. 4.3 was evaluated for

each molecule and compared to a uniformly distributed random number between 0 and 1 to

determine whether excitation occurred (see below for long-lived photodynamics). Typically,

ǫ was adjusted to yield 104 − 105 detection events per second. For some computations, the

functional form of Iapp(r) was adjusted to accommodate other excitation profiles.

4.3.3.2 Photophysical conversions

Molecules in the excited state were allowed to relax via fluorescence, intersystem

crossing, or photobleaching mechanisms as described below.

Fluorescence. The fluorescence lifetime of the excited state, τF , was assumed to be

much faster than the step time of the Brownian dynamics simulation so that excitation and

de-excitation occurred during the same time step (τF ≪ δt). Fluorescence photons were

emitted with a constant quantum yield probability, QF , simulated by comparing a specified

QF with a uniformly distributed random number in the range 0-1:

pph(ri, ωi; t|r
′

i, ω
′

i; t
′

) = δ(t− t
′

)

pem(ri, ωi; t) = QF (4.4)

Since molecules are regenerated immediately after excitation-emission, pS0
(i) = 1 for all i

in Eq. 4.2.

Intersystem crossing. Excited molecules were allowed to cross over into a triplet

state with a constant probability, QT . Once in the triplet state, molecules were allowed to

decay non-radiatively to the ground state with a constant probability defined by a charac-
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teristic exponential time constant, τT > δt:

pph(ri, ωi; t|r
′

i, ω
′

i; t
′

) = QT/τT

pem(ri, ωi; t) = 0 (4.5)

Molecules in the triplet state were excitable again only after relaxing to the ground state;

while in the triplet state, pS0
(i) was set to 0 in Eq. 4.2. Molecules in the triplet state

molecules that crossed a periodic boundary of the simulation box were assumed to have

“escaped” and so were returned to the ground state.

Photobleaching. Excited molecules were forced to become unexcitable permanently

with constant probability, QB :

pph(ri, ωi; t|r
′

i, ω
′

i; t
′

) = QB/τB

pem(ri, ωi; t) = 0 (4.6)

with pS0
(i) = 0. Photobleached molecules were regenerated (pS0

(i) set to 1) once they

crossed the periodic boundary of the simulation box to prevent continuous depletion and

non-steady-state effects.

4.3.3.3 Correlation function and histogram computations

F (t), calculated from Eq. 4.1, was stored as a paired list of times between consecutive

photons and number of photons (photon arrival times, PAT) (Figure 4.1C). To maximize

computational efficiency where the simulation time step was much smaller than the charac-

teristic time of photon arrival, a binned PAT format was used in which the number of bins, b,

between consecutive bins with photons (bins i and i+b) was recorded along with the number
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of photons counts, k, registered in bin (i+b). For a list of PAT pairs, p(j) = {b(j), k(j)},

the time autocorrelation function of fluorescence fluctuations was computed as:

G (τ = b(j)∆τ) =




(B − b(j))−1

M−1∑

i=1

M∑

j=i+1

k(i)k(j − 1)


 / (K/B)2


− 1 (4.7)

where M is the length of the PAT list, K is the total number of photons counted
(
=
∑M

j=1 k(j)
)
,

and B is the total number of bins between the first and last detected photons
(
=
∑M

j=2 b(j)
)
.

For calculation of cross-correlation functions using paired Fx(t) and Fy(t), an absolute

PAT format (absPAT) was used instead, in which b(j) entries are replaced by the absolute

time in which photons arrive (in units of ∆t): pabs(j) = {babs(j), k(j)}. For two absPAT

records, pabs
x (j) = {babs

x (j), kx(j)} and pabs
y (j) = {babs

y (j), ky(j)}, the cross-correlation func-

tion was computed as:

Gcross (τ = [bx(i)− by(j)] ∆τ) =

[((
1

Bmin−[bx(i)−by(j)]

)∑Mx

i=1

∑My

j=1 kx(i) · ky(j − 1)
)]

(Kx/Bx) (Ky/By)
− 1

(4.8)

where Bmin = min [Bx, By]. Eq. 4.7 can be used to compute simultaneously, forward (τ > 0)

and reverse (τ < 0) cross-correlation functions, Gxy(τ) and Gyx(τ), respectively.

Computation of the correlation function using photon arrival times as described above

is more efficient than the standard direct approach using the fluorescence trace, scaling

approximately as M2 (M = number of PAT pairs) instead of as B2 (B = total number of

simulation time bins). For a 2 s simulation with a 200 ns time step, a high photon count rate

of 100 kHz/molecule, and an average of 1 molecule in the observation volume, M ≤ 2× 105

whereas B = 107. In this case, computing the correlation function using the direct approach

took seven hours on a 2.8 MHz Pentium 4 whereas the PAT method took 30 min.

The calculation of G(τ) was described by Eqs. 7 and 8 is similar to that of Davis et al.
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(2003)47 that mimics the computation of hardware correlator cards. In our approach, G(τ)

is computed at each τ by multiplication of PAT counts corresponding to that photon arrival

time, whereas G(τ) is computed by Davis et al. by addition. The computation of G(τ)

by multiplication becomes efficient for large photon count rates where the number of bins

containing more than one count is significant; multiple additions would then be necessary

as opposed to a single multiplication. In practice, we found an insignificant difference (<1

s) in computation time between the two methods for the simulation described here.

To mimic the temporal resolution and time-binning structure of hardware correlators

used in FFM experiments, G(τ) were averaged in a quasi-logarithmic manner.222,223, 269

Briefly, G(τ) values within each of the first 8 successive time blocks ∆τ were averaged

for a total of 8 initial averaged values of G(τ); here, ∆τ=32 or 200 ns, corresponding

to the resolution of commercially available hardware cards. Each subsequent group of 8

G(τ) values were averaged using a width that was twice that of the preceding group. For

example, averaged G(τ) values 9-16 were obtained with width 2∆τ ; G(τ) values 17-24 had

width 4∆τ ; and so on. The averaging procedure was continued until all simulated G(τ)

values were averaged.

Functions were fit to averaged and binned G(τ) by nonlinear least-squares fitting

procedures. The fits were weighted by the standard deviation of G(τ), determined from

multiple simulations with the same set of parameters but with different starting configu-

rations and random number seeds.205,219 Data analysis was conducted in either Microsoft

Excel98 or Igor Pro 4 (WaveMetrics, Inc., Lake Oswego, OR). Identical values of fitted Excel

parameters were obtained using Mathematica 4.0 (Wolfram Research, Inc., Champaign, IL).
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The photon count histogram (PCH), P (k;∆T ), was computed by re-binning the

PAT using a specified time bin, ∆T , followed by tabulating the number of counts, k, in

the re-binned PAT list (see Section 4.6). PCH data were fit by numerically integrating the

equations of Chen et al. (1999)32 and using a Levenberg-Marquardt routine201 implemented

in Mathematica 4.0 (see Section 4.7). The two fitting parameters were N , the average

number of molecules in the excitation volume, and ǫ, the average specific brightness, in

units of counts·(time bin)-1·molecule-1.

4.3.3.4 FFM measurements

FFM measurements on 1-5 nM aqueous calcein solutions (Molecular Probes Inc.,

Eugene, OR) were done on by directing a 488 nm beam from a diode laser (Coherent Inc.,

Santa Clara, CA) through a 100x oil objective lens using a Nikon TE-300 inverted epifluores-

cence microscope. The excitation light was focused on thin fluid layers sandwiched between

coverglasses. Emitted fluorescence passed through a 510 nm dichroic mirror and 525 ± 25

nm bandpass filter (Chroma Technologies Corp., Rockingham, VT), and was focused onto a

100 µm diameter fiberoptic cable (Fico Inc., Tyngsboro, MA). Photon counts were detected

using an avalanche photodiode (Perkin Elmer Optoelectronics, Ltd.) and correlated with

an ALV-5000 correlator card (ALV-Laser Vertriebsgesellschaft mbH, Langen, Germany).
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4.4 Results

4.4.1 Validation: Brownian diffusion

To validate our computational approach, FFM simulations of Brownian diffusion in a

Gaussian excitation volume were carried out where analytical expressions exist for G(τ) and

P (k;∆T ). Figure 4.2A shows a linear plot of mean square displacement vs. time (r=0.99),

confirming a lack of correlation in the 1010 random numbers generated for the Brownian

dynamics simulation. The diffusion coefficient computed from the slope was 298 µm2/s, in

agreement with 300 µm2/s used in the simulation.

A 1×1×3 µm observation box was set up at the center of the 10×10×10 µm simulation

box, and the number of particles within the observation volume tracked throughout a 1 s

simulation time. The average number of particles in the observation volume was 3.02,

as expected from the observation volume of 3 µm3 and the specified concentration of 1

particle/µm3. The number of particles in the observation volume varied from 0 to 13 during

the simulation. Figure 4.2B shows representative fluctuations in the number of particles in

the observation volume over a representative 100 µs time interval. Figure 4.2C shows the

number of fluorescence detection events (binned in 200 ns time intervals) during the same

time after processing through the fluorescence filtering module.

Figure 4.2D shows G(τ) computed from F (t), together with a fit of the analytical

equation for Stokes-Einstein diffusion in a volume defined by a Gaussian excitation beam

profile:212

G(τ) = G(0+) (1 + τ/τD)−1 (1 + τ/κ2τD

)−1/2
(4.9)

where τD is the characteristic diffusion time through the excitation volume, and κ is the ratio
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Figure 4.2: Validation of simulation method. The Brownian dynamics simulation of
particle diffusion was run for 1 s using a 200 ns time step for 1000 molecules with diffusion
coefficient 300 µm2/s in a 10× 10× 10 µm box (average concentration 1 particle/µm3; 1.7
nM). (A) Mean squared displacement (MSD) plot of particle positions. The fitted slope gives
a diffusion coefficient of 298 µm2/s. (B) Representative plot of the number of particles, NV ,
in a 1× 1× 3 µm cubic observation volume. (C) Corresponding plot for detected photons.
Molecules were excited with a Gaussian excitation profile of wxy = 0.354 µm, wz = 1.061
µm (κ = 3), and specific brightness 17 kHz/molecule. (D) Autocorrelation function, G(τ),
computed from F(t) from four separate simulations. The solid line is fitted G(τ) for a simple
diffusion (Eq. 4.9) (see text for fitted parameters), with fractional deviation (∆) shown in
the lower panel. (E) Photon count histogram P (k;∆T ), generated from the fluorescence
trace with ∆T = 20 µs. Data were fitted with the P (k;∆T ) for Poisson distribution (dotted
curve) and super-Poissonian model (theory; solid curve).32 (F) Effect of excitation profile
on G(τ). Trajectories were generated as above. The fluorescence module was modified
to produce cubic, spherical, and symmetric Gaussian (wx = wy = wz) excitation profiles.
Simulated data were fitted to Eq. 4.9, and the fractional deviation between fit and simulation
(∆) plotted.
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wxy/wz . The simulated data were fitted well, with τD of 405± 15 µs (SD) from an average

of four separate 1 s simulations, in agreement with 419 µs calculated using the diffusion

coefficient derived from Figure 4.2A and the specified Gaussian illumination volume τD =

(2wxy)
2 /4D. The fitted G(0+) was 0.169±0.003, in agreement of 0.169 calculated from the

particle concentration, CN , and Gaussian illumination volume G(0+) =
(
8π3/2CNκw3

xy

)−1
.

Figure 4.2E shows P (k;∆T ) computed from F (t), together with a fit to the theory given

by Chen et al. (1999).32 The simulated P (k;∆T ) was in excellent agreement with the

theory predicting a “super-Poissonian” function, but quite different from a single Poisson

distribution shown for comparison.

Additional computations were done to validate the model, including demonstrating

predicted effects on τD and G(0+) upon changing particle concentrations and diffusion coef-

ficients: τD was not affected by concentration and was inversely proportional to the friction

coefficient, while G(0+) was not affected by the friction coefficient and was inversely propor-

tional to concentration (data not shown). simulations done with non-Gaussian excitation

and emission profiles (spherical, cubic, and symmetric Gaussian) at constant volume re-

vealed small though significant changes in the G(τ) curve shape (Figure 4.2F) that could be

misinterpreted as anomalous or other types of complex diffusion.

4.4.2 Effects of intersystem crossing on G(τ) and P (k; ∆T )

The effect of triplet state intersystem crossing on G(τ) was simulated by allowing an

excited molecule in state S1 to enter the triplet state (T1) as a first-order kinetic process

characterized by time constant τis (Figure 4.3A). Decay from the triplet state to the ground

state was also simulated as a first-order kinetic process characterized by triplet lifetime τtrip.
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Figure 4.3: Simulations of intersystem crossing. (A) Kinetic scheme for intersystem
crossing. (B) Simulated G(τ). Brownian dynamics trajectories (1 s) generated for 192
spherical molecules of diffusion coefficient 107 µm2/s in a 4×4×12 µm box (1 molecule/µm3;
1.7 nM) with step time 50 ns (total of 107 steps), with k12 = k21 = 2.0 × 107 s-1, τis = 0.3
µs-1, and τ t= 5 µs. F(t) generated using a Gaussian excitation beam (wxy = 0.354 µm
and wz = 1.061 µm) with indicated specific brightness (in kHz/molecule). The smooth
curves (which follow the simulated data very closely) are fits of Eq. 4.10 (see text for
fitted parameters). (C) Effect of intersystem crossing on P (k;∆T ) with ∆T = 20 µs.
Data were simulated as in (B) with specific brightness 370 kHz/molecule (in the absence of
intersystem crossing). Solid lines are fits of the super-Poissonian model with parameters:
control (observed simulation values in parentheses): N = 2.06 (2.16), ǫ = 5.07 (4.86); triplet
state: N = 2.01 (2.62), ǫ = 3.41 (2.62).
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Molecules in the triplet state were not subject to excitation, and decay from the triplet state

occurs without photon emission.

Figure 4.3B shows G(τ) for a simulations with intersystem crossing at constant τis =

0.3 µs and τtrip=5 µs as a function of excitation intensity. The excitation intensity in

Figure 4.3B is expressed in terms of the specific brightness (detector counts per molecule per

second) obtained from runs in the absence of triplet state kinetics. For this combination of

τis and τtrip, which are typical of values obtained experimentally,264 high specific brightness

is required to populate appreciably the triplet state.

For the case of isotropic diffusion in a hydrodynamic medium in which the time scale

of triplet state kinetics is much faster than that of diffusion kinetics (the conditions under

which Figure 4.3B was simulated), G(τ) is given by:264

G(τ) = G(0+) (1 + τ/τD)−1 (1 + τ/κ2τD

)−1/2

(
1 + T

(
e−τ/τT − 1

)

1− T

)
(4.10)

where T is the steady-state fraction of molecules in the triplet state, and τT is the charac-

teristic time for triplet state decay. The smooth curves in Figure 4.3B are fits of simulated

G(τ) to Eq. 4.9. The triplet state parameters obtained from the fit (T=0.17, 0.28, 0.43

and τT = 3.6, 3.3, 2.8 µs, for specific brightness 1.8 × 105, 3.7 × 105 and 7.0 × 105, respec-

tively) were in good agreement with those calculated from the parameters used to generate

the simulation (T= 0.16, 0.27, 0.40 and τT =3.5, 3.4, 2.9 µs, respectively). T and τT are

spatial averages weighted by the square of the fluorescence intensity across the excitation

profile.264 T was calculated numerically by dividing the simulation cell into sub-cells of 0.1

µm3, tabulating the square of the fluorescence intensity (i2) and the fraction of molecules

in the triplet state (T ) for each sub-cell, and then summing the product over the simulation
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box and over all time steps: T =
∑

i2F/
∑

F , where F = T/(1−T ). τT was calculated for

each sub-cell by determining the triplet state lifetime (τT ) of molecules entering the triplet

state in that sub-cell, then summing the product: T =
(∑

τT i2F/c
)
/
(∑

i2F/c
)
, where c is

the concentration of molecules in the sub-cell. The time constant τT is related to the triplet

lifetime, τT , by 1/τtrip = 1/τT − k12/ (τis (k12 + k21)).

Figure 4.3C shows the effect of triplet state kinetics on the PCH. As expected, triplet

state kinetics lowered the most probable count rate. Interestingly, P (k;∆T ) for triplet

state kinetics were fitted well by the “super-Poissonian” theory applicable in the absence of

triplet state kinetics, albeit with altered specific brightness and concentration, indicating

the inability to detect triplet state phenomena by PCH analysis alone.

4.4.3 Effects of photobleaching on G(τ) and P (k; ∆T )

Photobleaching was simulated by including a first-order kinetic process that converts

an excited molecule into a permanently dark state (Figure 4.4A). G(τ) and P (k;∆T ) were

compared in the absence of photobleaching and for different photobleaching rates as given

in Figs. 4.4B and C. In the absence of photobleaching, G(τ) was described by Eq. 4.9 with

fitted G(0+) and τD (0.168, 0.422 ms) in agreement with parameters used in the simulation

(0.169, 0.419 ms). As the photobleaching rate increased, simulated G(τ) were still described

reasonably well by Eq. 4.9, with some deviation apparent at the highest rate. Photobleach-

ing produced an increase in apparent G(0+) (0.296 and 0.428 for τbleach = 3 µs and 1 µs,

respectively) and decrease in τD (0.244 ms and 0.130 ms). Qualitatively, the increase in

G(0+) with photobleaching arises from reduced steady-state fluorophore concentration in

the illuminated volume, and the decrease in τD arises from enhanced apparent mobility as
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Figure 4.4: Simulations of photobleaching. (A) Kinetic scheme for photobleaching. (B)
Effect of photobleaching on G(τ) Brownian dynamics trajectories generated as in Figure 2.
F(t) was generated using a Gaussian excitation beam (wxy = 0.354 µm, wz = 1.061 µm)
with indicated photobleach time constants. Specific brightness was 17 kHz/molecule (in
the absence of photobleaching). Data were simulated at constant excitation light intensity.
The solid lines are fits of Eq. 4.9 (see text for values of fitted parameters) with fractional
deviation (∆) at τbl = 1 µs shown in the lower panel. (C) Fit of Eq. 4.11 with parameters:
G(0+) = 0.40, τD = 0.34 ms, B=0.86, and τbl = 0.53 ms with fractional deviation (∆).
(D) Effect of photobleaching on P (k;∆T ) Data were binned with ∆T = 20 µs. The solid
lines are fits to the super-Poissonian model (with observed simulation values in parentheses):
control: N = 2.16 (2.0862), ǫ = 0.9463 (0.98); 3 µs bleach: N = 1.30 (1.19), ǫ = 0.70 (0.76);
1 µs bleach: N = 0.99 (0.88), ǫ = 0.45 (0.51).
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bleached fluorescent molecules disappeared from the excitation volume.

Photobleaching can be taken into account approximately by the inclusion of an ad-

ditional exponential term in the correlation function:56,60

G(τ) = GD(τ)
(
1 + B

(
e−τ/τbleach − 1

))
(4.11)

where GD(τ) is the autocorrelation function with no photobleaching (Eq. 4.9), B is the

average fraction of excited molecules that photobleach, and τbleach is the average photobleach

time constant. Figure 4.4C shows that this modified correlation function describes G(τ)

well for τbleach = 1 µs. Figure 4.4D shows the effect of photobleaching on P (k;∆T ). As

expected, the count rate decreased with photobleaching, from 104 kHz (no photobleach)

to 51.2 kHz (τbleach = 3 µs) to 25.4 kHz (τbleach = 1 µs). As was the case for triplet-

state kinetics (Figure 4.3C), the P (k;∆T ) for photobleaching were fit well by the super-

Poissonian theory applicable in the absence of photobleaching, indicating the inability to

identify photobleaching by PCH analysis alone.

The predictions from the simulations of the effects of photobleaching on were tested

experimentally by FFM measurements on aqueous calcein solutions. Representative G(τ)

shown in Figure 4.5 indicate an increase in G(0+) and reduction in τD with increased excita-

tion light intensity. The experimental data are qualitatively consistent with the predictions

of Figure 4.4B, although the experimental data also show evidence for increased triplet state

population with increased excitation intensity.
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Figure 4.5: Effect of excitation light intensity on G(τ) for calcein. The solid lines
are fits of Eq. 4.9 to the data (starting at 10 µs). Fitted parameters: G(0+)= 0.082, 0.11,
0.23, 0.31 and τD = 0.60, 0.63, 0.43, 0.22 ms for relative light intensities of 1, ×2, ×6, and
×20, respectively.

4.4.4 Two-color cross-correlation validation and effects of beam mis-alignment

The effects of dimer formation on auto- and cross-correlation G(τ) in two-color FFM

was simulated by configuring a system consisting of equal numbers of two kinds of particles,

A and B, each of which could be excited and detected separately. A specified fraction of

A and B were bound permanently as A-B rigid rod dimers of 50 nm bond length. Figure

4.6A shows the cross-correlation function, GAB(τ), of A and B as a function of the fraction

held bound. As expected, GAB(0+), increased with fraction bound. Figure 4.6B shows that

GAB(0+) increased linearly with fraction bound, while the autocorrelated GAB(0+) was not

sensitive to binding, as expected.

The simulated effect of beam misalignment on FFM measurements on a collection of

rigid A-B dimers is shown in Figure 4.6C. For these simulations, identical Gaussian excita-

tion/detection profiles were used, and the centers of the two profiles were offset. The offset



98

fraction bound

0

0.33

0.66

1.0

0.001 0.1 10

0.1

0.2

0

A

time (ms)

0.1

0.2

0

offset

0

0.7

2.8

0.001 0.1 10

time (ms)

0
0.001 10

0.04
C

0 0.5 1.0

fraction bound

autocorrelation

0

0.1

0.2

crosscorrelation

B

0

0.1

0.2

0 1 2 3

offset (∆x/σ)�

D
autocorrelation

crosscorrelation

G   (τ)
AB

G   (τ)
AB

G(0
+
)G(0

+
)

Figure 4.6: Simulations of two-color FCS. Brownian dynamics trajectories (1 s) gener-
ated for 192 spherical particles of type A and 192 spherical particles of type B (each with
diffusion coefficient 273 µm2/s) in a 4 × 4 × 12 µm box using a step time of 100 ns for
107 steps. F(t) generated using a Gaussian excitation beam (wxy = 0.354 µm, wz = 1.061
µm) and specific brightness 17 kHz/molecule. (A) Effect of dimer formation on the cross-
correlation function. Indicated fractions of A and B were constrained as 50 nm rigid-rod
A:B dimers. Solid lines are a fit of Eq. 4.9. Fitted parameters: G(0+)= 0.055, 0.112, 0.165
and τD = 0.97, 0.97, 0.83 ms for fraction bound 0.33, 0.66, 1.00, respectively. For unbound
A and B, G(0+) = 0.163 and τD = 0.42 ms (data not shown). (B) Dependence of G(0+) on
fraction bound. The autocorrelation of the A molecules, GAA(0+), is shown. GBB(0+) (not
shown) was identical to GAA(0+)). (C) Effect of beam misalignment on cross-correlation
function. A and B were constrained as 50 nm rigid-rod A:B dimers. Illumination and de-
tection profiles for A and B were displaced in the x-direction by indicated distances. The
solid lines represent a fit of Eq. 4.9 to the data. Fitted parameters: G(0+) = 0.158, 0.102,
0.026 and τD = 1.63, 1.38, 5.96 µs for offset ∆x/σ = 0.0, 0.7, and 2.8, respectively. ∆x is
the offset of the centers of the Gaussian excitation profiles and σ is the standard deviation
in the x -direction. Inset shows lower curve on expanded y-scale. (D) Effect of misalignment
of beams on auto and cross-correlation amplitudes.
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in the x-direction was expressed as a fraction of the standard deviation of the Gaussian

profile. As expected, GAB(0+) decreased with increasing offset. The inset to Figure 4.6C

shows an expansion of the lower curve, revealing a peak in cross-correlation at 1 µs when the

beams are separated by 2.8 times the standard deviation. This peak in cross-correlation oc-

curs near the characteristic diffusion time of 1.6 µs, and corresponds to the cross-correlation

arising from diffusion of the A-B dimer from one detection volume to another. Figure 4.6D

shows that the GAB(0+) is relatively unaffected until the centers of the excitation profiles

are separated by more than 0.2 times the standard deviation.

4.4.5 Effects of binding on G(τ)

Simulations of binding were done for an ensemble of molecules in which there was a

constant probability that a molecule would stop in its trajectory (characterized by a time

constant τon), and once stopped, a constant probability that the molecule would resume

its trajectory (characterized by time constant τoff ). This system corresponds to binding

of a fluorophore to an immobile object with on and off rate constants 1/τon and 1/τoff ,

respectively. Simulations for τon/τoff = 1 are shown in Figure 4.7A. For τon = τoff = 50 µs,

G(0+) is relatively unaffected though the apparent τD increases. As the on-off times increase

to 5000 µs, G(0+) decreases and τD increases. The increase in apparent τD is related to

slowed fluorophore diffusion in the excitation volume because of binding; the reduced G(0+)

with slow on-off rates is related to fluorophores that do not escape the excitation beam

over the course of the simulation, acting as background fluorescence. In the limit of very

slow binding, bound fluorophores do not move whereas the free fluorophores diffuse without

binding. Since τon/τoff = 1 and half the fluorophores are bound for the simulations in
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Figure 4.7: Simulations of binding effects on FFM. Brownian dynamics trajectories
(1 s) generated for 192 spherical particles in a 4 × 4 × 12 µm box using a step time of 100
ns for 107 steps. F(t) were generated using a Gaussian excitation beam (wxy = 0.354 µm,
wz = 1.061 µm) and specific brightness of 17 kHz/molecule. Trajectories were modified
by fixing the positions of particles for a given time, as described in the text, characterized
by association time, τon, and dissociation time, τoff . To simulate slow binding, particles
selected at random were held fixed throughout the course of the simulation, and no additional
particles were allowed to bind. The fraction of particles held fixed at τoff/(τon +τoff ) = 0.5.
(A) Effect of binding on G(τ) with equally fluorescent bound and free particles. Solid lines
are a fit of Eq. 4.5, with fitted parameters: G(0+)= 0.170, 0.166, 0.136, 0.085 and τD = 0.45,
0.93, 1.52, 0.52 ms for control, τon = 50 µs, τon = 5000 µs, and slow binding, respectively.
(B) Same as in (A), except that bound particles were non-fluorescent. The solid curves are
a fit of Eq. 4.9 with: G(0+) = 0.170, 0.356 and τD = 0.45, 0.41 ms for control and slow
binding, respectively.
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Figure 4.7A, G(0+) is reduced to half of its original value with no change in τD.

Simulations were also done for the case where the bound complex is non-fluorescent

(Figure 4.7B). A second component is seen in autocorrelation functions, corresponding to

a flickering of the fluorescence signal produced by binding-unbinding (cf. Elson and Magde

(1974)65). As the binding rate slows, the second component becomes more prominent until,

in the limit of infinitely slow binding, the system behaves as a collection of fluorophores at

half the concentration of control. The fitted G(0+) values (0.170 and 0.356) and τD-values

(0.45 ms and 0.41 ms) for control and slow binding support this interpretation. For slow

binding data in Figure 4.7B, 50% of fluorophores are dark at any one time, producing a

two-fold increase in G(0+) but no change in τD.

4.4.6 Effects of anomalous diffusion on G(τ)

Anomalous super-diffusion was modeled by inclusion of drift in the Brownian dynam-

ics simulation. Increasing drift (velocity from 0-3 mm/s) produced greater upward curvature

in the MSD plot (Figure 4.8A) signifying super-diffusion. The corresponding G(τ) curve

shape differed significantly from that for simple diffusion (Figure 4.8B), but reasonably well

to the semi-empirical equation often used for FCS measurements of anomalous diffusion:261

G(τ) = G(0+) (1 + (τ/τD)α)−1 (1 +
(
τ/κ2τD

)α)−1/2
(4.12)

Fitted α values were 1.5 and 2.5 for drifts of 1 and 3 mm/s, respectively. Fit results are

shown in 4.1.

Anomalous sub-diffusion was modeled by confining diffusion to a box with reflecting

boundaries. At box sizes comparable to the size of the Gaussian excitation beam (width
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Figure 4.8: Simulations of anomalous diffusion and molecular crowding. (A) MSD
plots for simulated super- and sub-diffusion. Brownian dynamics trajectories were generated
for 0.73 µm particles at a concentration of 2 particles/µm3 for 100 ms using a 200 ns time
step (average of 50 trajectories). Super-diffusion was simulated by a constant velocity (v)
in the x -direction. Sub-diffusion was simulated by confining the particle to a rectangular
box of indicated dimensions. (B) Super-diffusion. F(t) were generated with a Gaussian
excitation profile of wxy = 0.354 µm, wz = 1.061 µm (κ = 3) and specific brightness of 17
kHz/molecule. G(τ) as a function of velocity shown along with deviations (∆) between fit
of Eq. 4.9 (dashed line) or 11 (solid line) and simulation. Fitted parameters are given in
4.1 below. (C) Sub-diffusion. F(t) and fits generated as in (B). Infinite box size refers to a
3 × 3 × 9 µm box with periodic boundary conditions. (D) Non-bonding potentials used in
crowding simulations. The radius of the particles was defined operationally as the distance
from the center of the particle at which the potential dropped to kT. (E) Effect of crowding
on G(τ) Brownian dynamics trajectories (100 ms) were generated for 81 spherical diffusing
particles (diffusion coefficient 95 µm2/s, effective radius 0.45 nm) and 420 large crowder
particles (diffusion coefficient 0.67 µm2/s, effective radius 300 nm) in a 3 × 3 × 9 µm box
for a volume exclusion of 59%. The solid lines represent a fit of Eq. 4.9 to the data. Fitted
parameters: G(0+) = 0.161, 0.164 and τD= 0.80, 2.01 ms for volume fraction 0 and 59%,
respectively.
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simple diffusion anomalous diffusion

Simulation G(0+) τD (ms) G(0+) τD (ms) α

Super-diffusion, control 0.081 0.41 0.079 0.409 1.07
Super-diffusion, v=1 mm/s 0.085 0.28 0.074 0.31 1.5
Super-diffusion, v=3 mm/s 0.098 0.11 0.074 0.17 2.5
Sub-diffusion, control 0.080 0.39 0.077 0.39 1.08
Sub-diffusion, 3× 3× 9 µm 0.086 0.47 0.085 0.48 1.03
Sub-diffusion, 2× 2× 6 µm 0.070 0.30 0.068 0.30 1.07
Sub-diffusion, 1× 1× 3 µm 0.049 0.13 0.051 0.12 0.89

Table 4.1: Fitted parameters for simulations of anomalous diffusion and crowding
of Figure 4.8.

0.7×0.7×2.1 µm), MSD plots were downward curved (Figure 4.8A) signifying sub-diffusion.

MSD plots leveled out at long times (data not shown). Corresponding G(τ) (Figure 4.8C)

were fitted using Eq. 4.11 with α of 1.0 and 0.9 for box sizes of 2× 2× 6 and 1× 1× 3 µm,

respectively.

As another possible cause of anomalous sub-diffusion, molecular crowding, was mod-

eled by simulating the diffusion of small fluorophores (radius 0.73 nm) in a crowded envi-

ronment containing large non-fluorescent mobile spheres (radius 150 nm). Intermolecular

interactions were specified by the nonbonding potentials shown in Figure 4.8D. (The crow-

der volume fractionw as calculated by taking the effective crowder radius as the distance at

which the intermolecular potential increased to kT.) At a crowder volume fraction of 59%,

there was an increase in apparent τD by 2.5-fold without change in G(0+) (Figure 4.8E)

and MSD plots linear with a 2.5-fold decrease in slope (data not shown). MSD plots of

large crowder particles were also linear over the simulation time course (data not shown).

The G(τ) shape was described adequately by a model without anomalous diffusion (Eq.

4.9). Because of computation time constraints it was not practical to carry out crowding
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simulations at higher crowded volume fractions or using smaller crowder sphere diameters

where greater slowing of diffusion is predicted.

4.5 Discussion

The purpose of this study was to develop a generalized computational approach

for simulation of correlation functions and intensity histograms to investigate phenomena

that can complicate the interpretation of FFM measurements on biological systems. Such

simulations enable analysis of systems for which analytical expressions for G(τ) or P (k;∆T )

do not exist, such as non-Gaussian detection volumes, complex photophysical phenomena,

diffusion through complex, inhomogenous or anisotropic media, or when the system is subject

to a perturbing non-equilibrium process. The simulations described here were applied to

analyze the impact of these non-idealities on FFM data: photobleaching, mis-aligned focal

volume elements in two-color FFM (TCFFM) experiments, transient fluorophore binding to

an immobile substrate, and diffusion through crowded media.

4.5.1 Simulation method

Our simulation approach used three distinct modules for the computation of particle

trajectories, simulation of photon statistics to generate F(t), and computation of correlation

functions and histograms from F(t). Trajectories were computed as Brownian molecular

dynamics trajectories to enable the time and spatial resolution needed to simulate rapid

photophysical effects and interparticle interactions. In contrast, in most FCS simulation

methods trajectories are generated by random jumps between lattice points on a grid.47,188
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While lattice methods are computationally efficient, intra- and inter-molecular interactions

are difficult to simulate in a lattice framework. Here, we generated trajectories using the

Langevin equation appropriate for a highly damped system of independent particles. This

approximation is valid for low concentrations of small particles over time scales much greater

than the characteristic relaxation time for particle motion.30 The relaxation time is given

by the ratio of particle mass to solvent friction coefficient For small molecules in aqueous

solutions, the relaxation time is on the order of a few fs, and thus much smaller than the

millisecond diffusion times simulated. The close agreement between the simulated data and

that predicted theoretically (Figure 3.2) supports approach used here to compute trajectories

for FFM simulation.

The modular nature of our simulation approach demonstrates how FFM simulations

could be performed without the need for a specialized or proprietary software packages.

Brownian dynamics trajectories were computed using the molecular dynamics package GRO-

MACS because it is freely available and well supported, and because it would be straight-

forward to model the effect of conformation and mobility coupling of polymers on FFM

experiments in future studies. Fluorescence statistics, correlation functions, and histograms

were computed using custom software, which allowed us to simulate effects of photophysical

phenomena and instrumental changes on FFM experiments.

Decoupling the molecular dynamics and fluorescence statistics components enabled

us to examine photophysical phenomena and different illumination profiles easily without

recomputing trajectories. Moreover, such an approach allows us to study separately the

influence of fluorescence statistics and particle statistics on FFM measurements. Other
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simulation approaches in which dynamics and fluorescence generation have been directly

coupled112,269 do not have these advantages.

Diffusion through structures having complex geometry, such as cellular organelles,

can produce significant deviations from G(τ) compared to isotropic diffusion. For example,

significant deviations from Eq. 4.3 are found for diffusion of small molecules through den-

dritic tubules with diameters much smaller than the focal volume,82 anomalous sub-diffusion

through cell cytoplasm,261 and non-Gaussian excitation profiles.104 The simulation approach

described here is readily adapted to include these phenomena. The effects of restricted diffu-

sion can be studied computing Brownian dynamics trajectories under appropriate conditions,

and of non-Gaussian excitation profiles by modifying the fluorescence statistics module.

The raw fluorescence trace data were stored in a photon arrival time (PAT) format.

The PAT is the most efficient way of encoding photon count data in the regime where

number of photon counts is much smaller than the number of available time bins in the

data acquisition hardware.62,150 We developed an efficient approach to compute intensity

auto- and cross-correlation functions and photon count histograms using PAT information

directly. Storing F(t) and calculating G(τ) and P (k;∆T ) using the PAT format obviated

the need to store and carry out computations of time bins that have zero counts.

4.5.2 Effects of photophysics on G(τ) and P (k; ∆T )

FFM experiments at high excitation light intensity with photolabile fluorophores can

be complicated by triplet state kinetics as well as by photobleaching (Figure 4.4D). These

two phenomena are often found concurrently: excitation to higher energy levels increases

both the probability of intersystem crossing and photobleaching. The effects are readily
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controlled in our simulation method.

Analytical forms for G(τ)264and P (k;∆T )188 have been developed for molecules that

undergo intersystem crossing into a triplet state. Simulations with triplet state photophysics

(Figure 4.3B) show excellent agreement with G(τ) predicted from theory. The histogram

analysis in Figure 4.3C showed that P (k;∆T ) computed with triplet state kinetics can be fit

well by the super-Poissonian theory neglecting photophysical effects. Palo et al. (2000)188

propose that the effects of triplet state trapping on P (k;∆T ) may be accounted for by using

apparent specific brightness and concentration values according to:

Napp ∝ capp(∆T ) =
c

Γtrip(∆T )Γdiff (∆T )(1 + κτ)

εapp = qapp(∆T ) = qΓtrip(∆T )Γdiff (∆T ) (4.13)

where ∆T is the histogram bin time, κ is the singlet-triplet transition rate, τ is the triplet

lifetime, and Γtrip(∆T ) and Γdiff (∆T ) are correction factors for triplet events and diffusive

mixing, respectively, occuring within the time ∆T . Specifically for triplet state dynamics:

Γtrip(∆T ) =

{
2λf

[
1 + f − λ

(
1− e−(1+f)/λ

)]}

(1 + f)3
(4.14)

where λ = τ/∆T and f = κτ . Using Eq. 4.14, however, leads to a significant underestima-

tion of the specific brightness and particle concentration compared to the values from the

simulation and those obtained through P (k;∆T )-fitting (Figure 4.3C). Significantly, this

implies that the current theory described by Palo et al. (2000)188 is insufficient for use in

determining triplet state parameters from P (k;∆T ).

Photobleaching effects become apparent on G(0+) and τD (with little change in the

shape of G(τ)) when the characteristic time constant for photobleaching is as low as 1%
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of the diffusion time (Figure 4.4B). The simulations of photobleaching (Figs. 4.4 and 4.5)

are qualitatively consistent with what is expected from removal of fluorophores from the

excitation volumes. Ignoring the effects of photobleaching on G(τ) can produce significant

underestimation of particle concentrations and overestimation of particle mobility. An im-

portant finding from our simulations is that the P (k;∆T ) shape profile is quite insensitive

to photobleaching dynamics, as was also found for triplet state dynamics. The main de-

terminants of P (k;∆T ) are the steady-state fluorescence properties of the molecules under

study, even if the time scales for P (k;∆T ) binning are comparable to the timescale of the

kinetics.

There is no analytical expression for the fluorescence autocorrelation as a function

of photobleach time because the probability of photobleaching depends in an unknown way

on the non-uniform excitation across the excitation volume. Eggeling et al. (1998)60 and

Dittrich and Schwille (2001)56 have developed an approximate expression for G(τ) (Eq.

4.11) assuming the excitation probability is uniform across the excitation volume. Eq. 4.11

describes the data well (Figure 4.4C) indicating that photobleaching in FCS experiments can

be thought of as a unimolecular kinetic process independent of the diffusional motion of the

fluorophore through the excitation beam. According to this view, effects of photobleaching

on FCS experiments become apparent when the effective photobleach time (τbleach of Eq.

4.11) becomes comparable to the characteristic time for diffusion through the excitation

beam (e.g., τbleach = 0.53 and τD = 0.34 ms for the conditions in Figure 4.4C).
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4.5.3 Molecular interactions

Two-color FFM (TCFFM) has been used to measure the concentration of bound

fluorophores,138 which relies on the fact that G(0+) and τD of the cross-correlation function

contain information only about bound fluorophores. As predicted, our simulations showed

that at constant fluorophore concentration G(0+) parallels the fraction of bound fluorophores

(Figs. 4.6A and B). The fitted diffusion time for the cross-correlation function (0.83-0.97

ms) was greater than that of the monomer (0.42 ms), as expected for slower dimer diffusion.

G(0+) for the cross-correlation function at 100% bound (0.165) was similar to that for

the autocorrelation function (0.163), indicating that all fluorophores are detected. These

simulations validate the use of cross-correlation methods to measure concentrations of bound

fluorophores.

In a common implementation of two-color FFM, two laser beams are used, with each

laser beam exciting a single class of fluorophores. It is generally advocated that the two

laser beams must be of equal intensity and superimposed if G(τ) is to be analyzed by simple

diffusional models (Schwille et al., 1997). Imperfect beam alignment was modeled as an

application of the TCFCM simulation. Our results (Figure 4.6D) indicate that the beams

may be displaced as much as 20% of the width of the excitation beam without significant

effects on G(τ). However, an offset of several times the width can lead to a peak in the

cross-correlation (Figure 4.6C, inset). Such a peak in GAB(τ) is also seen for transient

association of A and B ,107 so that mis-registration of the two excitation beams in two-color

FFM could be wrongly interpreted in terms of kinetic phenomena.

Fluorophore binding can also change G(τ) curve shape.233 Dynamic effects were
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simulated by stopping a fluorophore in its trajectory for a randomly chosen time so as to

produce first order unbinding kinetics. When binding occurs without a change in quantum

yield and on the time scale of diffusion through the illumination volume (Figure 4.7A),

significant effects on G(0+) and D were found even though the G(τ) curve shape was well

described by simple diffusion (Eq. 4.9). The G(τ) curve shape differed from that predicted

by simple diffusion when the diffusion time was increased by 10-fold. When binding occurs

with a change in quantum yield (Figure 4.7B), there are significant changes in the shape of

G(τ) for all rates of diffusion. Thus, fluorophore binding to a slowly diffusing or immobile

object on a time scale of the diffusion time or faster may not be detected from a curve-shape

analysis of G(τ) unless there is a change in fluorescence quantum yield upon binding.107

Furthermore, immobile fluorophores are not detected, producing an overestimate (Figure

4.7A) or underestimate (Figure 4.7B) in fluorophore concentration.

4.5.4 Anomalous diffusion and molecular crowding

Anomalous diffution can generally be defined as diffusion in which the mean-squared-

displacement (msd) of a particle is not proportional to time. Another commonly used defi-

nition of anomalous diffusion is that msd ∝ tα, where α 6= 1. In analysis of FFM data, the

parameter α is determined by fitting Eq. 4.12 to the data and used as a semi-empirical mea-

sure of anomalous diffusion. The approach used here was to investigate the effects of three

“non-normal” diffusive models (normal diffusion plus drift, reflecting boundary conditions,

and crowding) on FFM data..

Anomalous diffusion has been reported for molecular diffusion in crowded biological

environments such as membranes and cytoplasm.229,261 Anomalous super-diffusion, charac-
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terized by upward-curved MSD plots, can be produced by directed movement by convective

or motor-driven processes. Anomalous sub-diffusion, seen as downward-curved MSD plots,

can be produced by confined or restricted diffusion. Anomalous diffusion in FFM analysis

has been analyzed semi-empirically using Eq. 4.12, in which a parameter α is included. The

parameter α describes the power-law behavior of the MSD: r2 ∼ tα. An α of unity signifies

simple diffusion, with α < 1 indicating sub-diffusion and α > 1 super-diffusion.

Simulations of super-diffusion and sub-diffusion in Figure 4.8 produced non-linear

MSD plots and altered G(τ) curve shape. Super-diffusion, modeled by convection, pro-

duced an upwardly curved MSD relation (Figure 4.8A) as expected. Significant deviations

in G(τ) from simple diffusion were found (Figure 4.8B). G(0+) was unaffected by drift ve-

locity, indicating the average number of particles in the excitation beam was unaffected by

drift velocity. However, the apparent diffusion time τD increased with drift velocity as a

consequence of the reduced time a particle remains in the excitation volume. Notably, G(τ)

were fitted reasonably well such Eq. 4.12 with α > 1, providing the first direct validation

for use of Eq. 4.12 in FCS analysis of anomalous diffusion.

Sub-diffusion, modeled by confining particles to a rectangular box with reflecting

boundary conditions, produced downwardly curved MSD plots (Figure 4.8A). When the di-

mensions of the box became comparable to those of the excitation volume both G(0+) and

τD decreased, with a small change in α. G(0+) decreases because of the apparent increase

in particle concentration as particles are unable to diffuse out of the beam. τD decreases

because collisions with the box walls de-correlate particle motion, reducing apparent particle

transit time across the excitation volume. An important implication of these simulations is
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that FCS analysis of solute diffusion in a small confined compartments (such as an intracel-

lular organelle) could produce overestimations of solute diffusion and concentration without

significant change in G(τ) shape.

Molecular crowding, defined as the volume exclusion of solvent by a crowder, can

strongly slow solute diffusion and potentially produce anomalous sub-diffusion.45,93, 273 Cal-

culation of solute diffusion in crowded solutions using statistical mechanical theories, and

comparison with experimental data, suggest that the solute and crowder can be modeled

effectively as hard spheres with the solvent modeled as a continuum. Extensions to this

model include attractive potentials93 and Lennard-Jones and Coulomb interactions.63 Here,

crowding was simulated using Brownian dynamics with repulsive interactions between crow-

der and solute (Figure 4.8D). With large spheres at 59% by volume as crowder, solute

diffusion was slowed 2.5-fold with G(τ) fitting well to a simple diffusion model (α = 1) (Fig-

ure 4.8E). These results are in agreement with experimental data showing non-anomalous

diffusion of the small solute Rhodamine G with Ficoll-70 crowder concentrations of up to

60 wt% producing a 140-fold slowing of diffusion.45

Measurement of the diffusion of larger solutes with Ficoll-70 as a crowding agent also

show non-anomalous diffusion.45,46 However, Weiss et al. (2004)261 found anomalous diffu-

sion of large dextrans (10-2000 kDa) and IgG when cell cytoplasm was used as a crowding

agent. This apparent discrepancy has not been resolved. Because of computational time

constraints, it was not possible here to carry out the computationally intensive simulations

of crowding by large diffusing particles.

In conclusion, we have reported a general method for simulation of FCS data. The
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method was used to investigate effects of beam geometry, photophysical processes, binding,

anomalous diffusion, and crowding. Our approach should prove useful in the design and

analysis of FCS studies on biological systems with complex diffusive phenomena. Moreover,

our approach can be used to carefully study the consequences of measurement non-idealities

such as FRET, background fluorescence, and detector cross-talk, on TCFFM data analysis,

a subject for future development.
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4.6 Appendix 4A: Procedure to construct a photon arrival

time (PAT) list

A PAT list, p∆t(i) ,
{
b∆t(i), k∆t(i)

}
, of length M and bin time, ∆t, can be re-binnd

with time, m∆t, to generate the binned PST, pm∆t(i), using the following procedure:

For (i = 1, i ≤M, i + +) {

If (i == 1) then (remainder (i)← 0)

else

(
remainder (i)←Mod

[
b∆t(i− 1)− carry(i− 1), m

])

If (remainder (i) == 0) then (carry (i)← 0)

else (carry (i)← (m− remainder(i)))

btemp(i)← RoundUp
[(

b∆t(i) − remainder(i)
)
/m
]

}

For (i = M, i > 1, i−−) {

If

(
btemp(i) == 0

)
then

(
ktemp(i− 1)← k∆t(i− 1) + k∆t(i)

)

else

(
ktemp(i− 1)← k∆t(i)

)

ptemp(i)←
{
btemp(i), ktemp(i)

}

}

pm∆t(i) = Select
[
ptemp(i), btemp(i) > 0

]

where Mod [x, y] = x − y · RoundDown [x/y] and Select [x, y] selects all elements of x for

which y is true.
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4.7 Appendix 4B: Levenberg-Marquardt fitting routines used

to fit photon count histograms within Mathematica

Levenberg-Marquardt fitting of PCH data

<<Statistics DiscreteDistributions ;
<<LinearAlgebra MatrixManipulation ;

LMpch[Ptable_,M_,toler_,mult_,paramlist_List,PSF_:1 ]:=

 Module[{weitable,covar,oneda,da, Ptable, Dtable,D Ptable,atry,limits,oldchisq,
 chisq,oldatry,change, l,condition,temp},

  Print["PSF = ", PSF]; Print["Ptable = ",Ptable];
  limits=Qlim[Ptable]; Print["limits = ",limits];
  weitable=Weipch[Ptable,limits,M]; Print["weitable  = ",weitable];

  (*BEGIN LOOP TO CONVERGE CHISQ*)
l=-1;chisq=0; change=1000; Print["Begin LM loop"];Pr int["begin"];

  condition=True; iter=0; fail=0;

  While[condition && iter 77,
      {Print["Iteration: ", iter++];

    (*INITIALISATION*)
    If[ l -1,{{atry=paramlist,oldatry=atry}, l=mult,firsttime=0}];

    (*ASSIGNMENT OF THE MATRIX*)
    If[firsttime 0,{firsttime++;

   Print["atry = ",atry];
Ptable=Pch[atry,limits,PSF]; Print[" Ptable = ", Ptable];
Dtable=Diffpch[Ptable, Ptable,limits];

   oldchisq=Chisquare[ Dtable,weitable,limits];
   Print["oldchisq = ",oldchisq]; Print[first];}
 ];

    ptable=Pcharray[atry,limits,PSF];
    D Ptable=Derpch[ptable,limits,atry,PSF];
    covar=Alphapch[weitable,D Ptable,limits];
    covar[[1,1]]=covar[[1,1]]*(1+ l);
    covar[[2,2]]=covar[[2,2]]*(1+ l);
    oneda=Betapch[ Dtable,weitable,D Ptable,limits];

    (*SOLUTION OF LINEAR EQNS AND SOLVE FOR A NEW C HISQ*)
    da=LinearSolve[covar,oneda];
    atry=atry+da;

Ptable=Pch[atry,limits,PSF];
Dtable=Diffpch[Ptable, Ptable,limits];

    chisq=Chisquare[ Dtable,weitable,limits];

    (*DID THE TRIAL SUCCEED?*)
    If[oldchisq 0,change=0,

 If[chisq oldchisq,
   {(*SUCCESS,ACCEPT THE NEW SOLUTION*)
     (change=(oldchisq-chisq)/oldchisq ) toler;

l=l*mult;
     Print["Iteration: ", iter++,"\t\tSUCCESS!","\t \t l = ", l];
     oldchisq=chisq; oldatry=atry;
     },
   {(*FAILURE,INCREASE l AND RETURN*)

l=l/mult;
     chisq=oldchisq; atry=oldatry;
     Print["Iteration: ", iter++,"\t\tFAILED!","\t\ t l = ", l];
     fail++;
     }]];

l
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    If[((change<toler) && (Abs[ l]<toler)),condition=False];
    If [(chisq<1/(2M)),condition=False] ;
    Print[chisq,":",change,"::",atry];
    };

      ]

    Print["Failure rate = ", N[ fail/iter]];

  (*NOW SET l=0 AND SOLVE FOR covar -1  TO GET ERRORS*)
l=0;

  ptable=Pcharray[atry,limits,PSF];
  D Ptable=Derpch[ptable,limits,atry,PSF];
  covar=Alphapch[weitable,D Ptable,limits];
  covar[[1,1]]=covar[[1,1]]*(1+ l);
  covar[[2,2]]=covar[[2,2]]*(1+ l);
  oneda=Betapch[ Dtable,weitable,D Ptable,limits];
  da=LinearSolve[covar,oneda]; Print["LinearSolve =  ",da];
  atry=atry+da;Print["oldatry = ", oldatry]; Print[ "atry = ",atry];

Ptable=Pch[atry,limits,PSF];
Dtable=Diffpch[Ptable, Ptable,limits];

  chisq=Chisquare[ Dtable,weitable,limits];
  Print["Chisquare = ", chisq];
  Print["Errors in Parameters = ", Inverse[covar]];

  Return[atry];
  ]

Levenberg-Marquardt fitting of log-scaled PCH data

LMlogpch[Ptable_,M_,toler_,mult_,paramlist_List,PSF _:1]:=

 Module[{weitable,covar,oneda,da, Ptable, Dtable,D Ptable,atry,limits,
 oldchisq,chisq,oldatry,change, l,condition,temp},

  limits=Qlim[Ptable]; Print["limits = ",limits];
  weitable=Weilogpch[Ptable,limits,M]; Print["weita ble = ",weitable];

  (*BEGIN LOOP TO CONVERGE CHISQ*)
l=-1;chisq=0; change=1000; Print["Begin LM loop"]; P rint["begin"];

  condition=True; iter=0; fail=0;

  While[condition && iter 50,
      {Print["Iteration: ", iter++];

    (*INITIALISATION*)
    If[ l -1,{{atry=paramlist,oldatry=atry}, l=mult,firsttime=0}];

    (*ASSIGNMENT OF THE MATRIX*)
    If[firsttime 0,{firsttime++; Print["atry = ",atry];

   temp=Pch[atry,limits,PSF];
Ptable=Transpose[{temp[[All,1]],Log[temp[[All,2]]]}] ;
Dtable=Diffpch[Ptable, Ptable,limits];

   oldchisq=Chisquare[ Dtable,weitable,limits];
   Print["oldchisq = ",oldchisq]; Print[first];}
 ];

    ptable=Pcharray[atry,limits,PSF];
    D Ptable=Derlogpch[ptable,limits,atry,PSF];
    covar=Alphapch[weitable,D Ptable,limits];
    covar[[1,1]]=covar[[1,1]]*(1+ l);
    covar[[2,2]]=covar[[2,2]]*(1+ l);
    oneda=Betapch[ Dtable,weitable,D Ptable,limits];

    (*SOLUTION OF LINEAR EQNS AND SOLVE FOR A NEW C HISQ*)
    da=LinearSolve[covar,oneda];
    atry=atry+da;
    temp=Pch[atry,limits,PSF];

Ptable=Transpose[{temp[[All,1]],Log[temp[[All,2]]]}] ;
D P
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Ptable=Transpose[{temp[[All,1]],Log[temp[[All,2]]]}] ;
Dtable=Diffpch[Ptable, Ptable,limits];

    chisq=Chisquare[ Dtable,weitable,limits];

    (*DID THE TRIAL SUCCEED?*)
    If[oldchisq 0, change=0,

 If[chisq oldchisq,
   {(*SUCCESS,ACCEPT THE NEW SOLN.*)
     (change=(oldchisq-chisq)/oldchisq ) toler;
     Print["SUCCESS!"];

l=l*mult; Print[" l = ", l];
     oldchisq=chisq; oldatry=atry;
     },
   {(*FAILURE,INCREASE l AND RETURN*)

l=l/mult; chisq=oldchisq;
     atry=oldatry; Print["FAILED!"]; Print[" l = ", l];
     fail++;
     }]];

    Print["change = ",change,"\ttoler = ",toler,"\t Abs[ l] = ",Abs[ l]];
    If[((change<toler) && (Abs[ l]<toler)),condition=False];
    If [(chisq<0.0001), condition=False] ;
    Print[chisq,":",change,"::",atry];
    };

      ]
    Print["Failure rate = ", N[ fail/iter]];

  (*NOW SET l=0 AND SOLVE FOR covar^-1 TO GET ERRORS*)
l=0;

  ptable=Pcharray[atry,limits,PSF];
  D Ptable=Derlogpch[ptable,limits,atry,PSF];
  covar=Alphapch[weitable,D Ptable,limits];
  covar[[1,1]]=covar[[1,1]]*(1+ l);
  covar[[2,2]]=covar[[2,2]]*(1+ l);
  oneda=Betapch[ Dtable,weitable,D Ptable,limits];
  da=LinearSolve[covar,oneda]; Print["LinearSolve =  ",da];
  atry=atry+da; Print["oldatry = ", oldatry]; Print ["atry = ",atry];

Ptable=Pch[atry,limits,PSF];
Dtable=Diffpch[Ptable, Ptable,limits];

  chisq=Chisquare[ Dtable,weitable,limits];
  Print["Chisquare = ", chisq];
  Print["Errors in Parameters = ", Inverse[covar]];

  Return[atry];
  ]

Determine the k-range limit for a PCH

Qlim[Ptable_List]:=

 Module[{kmin,kmax,limits},
  kmin=Min[Ptable[[All,1]]];kmax=Max[Ptable[[All,1] ]];

  (* go up k until one encounters a zero probabilit y *)
  For[k=kmin, k kmax, k++,
    If[Ptable[[k-kmin+1, 2]] 0,
      {kmax=k,kmax--,Break[]}]
    ];
  limits={kmin,kmax};

  Return[limits];
  ]
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Calculate weights for fitting to a PCH

Weipch[Ptable_List,limits_List,M_]:=

 Module[{weitable,w,kmin,kmax,nelements,kcounts,p},

  kmin=limits[[1]]; kmax=limits[[2]]; nelements=(km ax-kmin+1);
  weitable=Array[w, {nelements,2}];
  For[j=1, j nelements, j++,
    {kcounts=kmin+j-1; w[j,1]=kcounts; p=Ptable[[j, 2]];
      If[Ptable[[j,2]] 0, Print["WARNING! weights are off!"],

  w[j,2]=(M/(p(1-p)))];
      }
    ];

  Return[weitable];
  ]

Calculate the weights for fitting to a log-scaled PCH

Weilogpch[Plogtable_List,limits_List, M_]:=

 Module[{weitable,w,kmin,kmax,nelements,kcounts,p},

  kmin=limits[[1]]; kmax=limits[[2]]; nelements=(km ax-kmin+1);
  weitable=Array[w, {nelements,2}];
  For[j=1, j nelements, j++,
    {kcounts=kmin+j-1; w[j,1]=kcounts; p=Exp[Plogta ble[[j,2]]];
      If[Ptable[[j,2]] 0, Print["WARNING! weights are off!"],

  w[j,2]=Log[Sqrt[M/(p(1-p))]]];
      }
    ];

  Return[weitable];
  ]

Calculate the difference between PCH data and en estimated PCH

Diffpch[Ptable_List, Ptable_List,limits_List]:=

 Module[{kmin,kmax, D, Dtable,nelements},

  kmin=limits[[1]]; kmax=limits[[2]]; nelements=(km ax-kmin+1);
Dtable=Array[ D,{nelements,2}];

  For[j=1, j nelements,j++,
    { D[j,1]=Ptable[[j,1]];

D[j,2]=Ptable[[j,2]]- Ptable[[Ptable[[j,1]]+1,2]];
      }
    ];

  Return[ Dtable];
  ]



119

Calculate the Chi squared for fitting a PCH

Chisquare[ Dtable_List,weitable_List,limits_List]:=

 Module[{ c2,kmin,kmax,nelements},

  kmin=limits[[1]]; kmax=limits[[2]]; nelements=(km ax-kmin+1);
c2=Sum[weitable[[j,2]]* HDtable @@j, 2 DDL2 , {j,1,nelements}];

  Return[ c2];
  ]

Calculate alpha factor for Levenberg-Marquardt fitting of PCH

Alphapch[weitable_List,D Ptable_List,limits_List]:=

 Module[{ a,a,kmin,kmax,nelements},

  kmin=limits[[1]]; kmax=limits[[2]]; nelements=(km ax-kmin+1);

a=Array[a,{2,2}];
  a[1,1]=Sum[weitable[[j,2]]*( DPtable @@j, 2 DDL2 , {j,1,nelements}];
  a[2,2]=Sum[weitable[[j,2]]*( DPtable @@j, 2 DDL2 , {j,1, nelements}];
  a[1,2]=a[2,1]=Sum[weitable[[j,2]]*(D Ptable[[j,2]]*D Ptable[[j,3]]),
   {j,1,nelements}];

  Return[ a];
  ]

Calculate beta factor for Levenberg-Marquardt fitting of PCH

Betapch[ Dtable_List,weitable_List,D Ptable_List,limits_List]:=

 Module[{ b,b,kmin,kmax,nelements},

  kmin=limits[[1]]; kmax=limits[[2]]; nelements=kma x-kmin+1;
b=Array[b,2];

  b[1]=Sum[weitable[[j,2]]* Dtable[[j,2]]*D Ptable[[j,2]],
   {j,1, nelements}];
  b[2]=Sum[weitable[[j,2]]* Dtable[[j,2]]*D Ptable[[j,3]],
   {j,1,nelements}];
  (* limits (+1) corrected to account for indexing *)

  Return[ b];
  ]
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Calculate the analytical derivatives for fitting a PCH

Derpch @ptable_List, limits_List, paramlist_List, PSF_: 1 D : =

Module A8 ntotal, kmin, kmax, D Ptable, d P, dp e, s, nmean, e, nelements, kcounts <,

kmin = limits @@1DD; kmax = limits @@2DD;
H* we use kmin and kmax here instead of 0 ->kmax to eliminate unnecessary

calculations that could slow down the LM routine. Note that a s a
result the indexing used here is different than than in the si milarly
structured Pch routine *L

nmean = Abs@paramlist @@1DDD; e = Abs@paramlist @@2DDD;
nelements = Hkmax - kmin + 1L;
ntotal = Quantile @PoissonDistribution @nmeanD, 0.999999999 D;

H* For k >0!! *L
dp3 DG@k_D : = HH2

!!!!!!!!!!
2 p L He k !LL NIntegrate AExp@-e Exp@-2 x 2DD He Exp@-2 x 2DLk

,

8x, 0, <E;

dp2 GL@k_D : =

HHHp 2L1-2 k L He k !LL NIntegrate AExpA-4 e p2 H1 + x2L2E H1 + x2L Ie H1 + x2L2 M
k
,

8x, 0, <E;

H* need to create an array of theoretical dp HnL de s as function of k *L
dpetable = Array @dpe, 8ntotal + 1, nelements <, 0 D;
dpe@0, 0 D = 0; H* dpe@0, k D=0 for all k =0->kmax. See below *L
For @n = 1, n ntotal, n ++, 8

s = 0;
For @k = 1, k kmax, k ++, 8

If @n == 1,
8dpe@0, k D = 0, H* dpe@0, k D=0 for all k =0->kmax *L

If @PSF == 0, dp e@1, k D = dp3 DG@kD, dp e@1, k D = dp2 GL@kDD
<,
8dpe@n, k D = Sum@dpe@1, k - r D* ptable @@n - 1 + 1, r + 1DD +

ptable @@1 + 1, k - r + 1DD* dpe@n - 1, r D, 8r, 0, k <D
<

D;
s = s + dpe@n, k D; <

D;
dpe@n, 0 D = -s; <

D;

H* create array d P HkL corresponding to experimental values *L
DPtable = Array @dP, 8nelements, 3 <D;
For @j = 1, j nelements, j ++,
8kcounts = kmin + j - 1,

dP@j, 1 D = kcounts,
dP@j, 2 D = H*nmean=*L

Sum@ ptable @@n + 1, kcounts + 1DD H -nmean Hn - nmeanL nmean-1+n n !L,
8n, 0, ntotal <D,

dP@j, 3 D = H*e=*L Sum@dpe@n, kcounts D H -nmean nmeann n !L, 8n, 1, ntotal <D,
<D;

Return @DPtable D;

E
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Calculate the analytical derivatives for fitting a log-scaled PCH

Derlogpch @ptable_List, limits_List, paramlist_List, PSF_: 1 D : =

Module A8 ntotal, kmin, kmax, D Ptable, d P, dp e, s, nmean, e, nelements, kcounts <,

kmin = limits @@1DD; kmax = limits @@2DD;
H* we use kmin and kmax here instead of 0 kmax to eliminate unnecessary

calculations that could slow down the LM routine. Note that a s a
result the indexing used here is different than than in the si milarly
structured Pch routine *L

nmean = Abs@paramlist @@1DDD; e = Abs@paramlist @@2DDD;
nelements = Hkmax - kmin + 1L;
ntotal = Quantile @PoissonDistribution @nmeanD, 0.999999999 D;

H* For k >0 !! *L
dp3 DG@k_D : = NIntegrate AExp@-e Exp@-2 x 2D D He Exp@-2 x 2DLk

, 8x, 0, <E
He NIntegrate @Gamma@k, 0, e Exp@-2 x 2 D, 8x, 0, <DDL;

dp2 GL@k_D : =

H2 pL2 k NIntegrate AH1 + x2L Ie H1 + x 2L2M
k

ExpA-4 e Ip2 H1 + x2L2ME,

8x, 0, <E Ie NIntegrate AH1 + x 2L GammaAk, 0, 4 e Ip2 H1 + x2L2ME,

8x, 0, <EM;

H* need to create an array of theoretical dp HnL de s as function of k *L
dpetable = Array @dpe, 8ntotal + 1, nelements <, 0 D;
dpe@0, 0 D = 0; H* dpe@0, k D=0 for all k =0->kmax. See below *L
For @n = 1, n ntotal, n ++, 8

s = 0;
For @k = 1, k kmax, k ++, 8

If @n == 1,
8dpe@0, k D = 0, H* dpe@0, k D=0 for all k =0->kmax *L

If @PSF == 0, dp e@1, k D = dp3 DG@kD, dp e@1, k D = dp2 GL@kDD
<,
8dpe@n, k D = Sum@dpe@1, k - r D* ptable @@n - 1 + 1, r + 1DD +

ptable @@1 + 1, k - r + 1DD* dpe@n - 1, r D, 8r, 0, k <D
<

D;
s = s + dpe@n, k D; <

D;
dpe@n, 0 D = -s; <

D;

H* create array d P HkL corresponding to experimental values *L
DPtable = Array @dP, 8nelements, 3 <D;
For @j = 1, j nelements, j ++,
8kcounts = kmin + j - 1,

dP@j, 1 D = kcounts,
dP@j, 2 D = H*nmean=*L Sum@ ptable @@n + 1, kcounts + 1DD + H-1 + n nmeanL,

8n, 0, ntotal <D,
dP@j, 3 D = H*e=*L Sum@dpe@n, kcounts D + Log@H nmeann Exp@-nmeanD n !LD,

8n, 1, ntotal <D,
<D;

Return @DPtable D;

E
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PCH array generator for use in Pch[] and DerP[]

Pcharray @paramlist_List, limits_List, PSF_: 1 D : =

H* paramlist_List is 8nmean, e< *L
H* limits_List is 8kmin, kmax < *L
H* If PSF =0, use 3 -d Gaussian form for p H1L;

otherwise, use Gaussian Lorentzian *L

Module A8nmean, e, kmax, ntot, p, s, ptable <,

nmean = Abs@paramlist @@1DDD;
e = Abs@paramlist @@2DDD;
kmax = limits @@2DD;
H* calculate all k:0 kmax entries.

Need for the recursion relationships *L

ntot = Quantile @PoissonDistribution @nmeanD, 0.999999999 D;

p2 GL@k_D : = Hp H2 k !LL* NIntegrate AH1 + x2L GammaAk, 0, 4  e Ip2 H1 + x2L2ME,

8x, 0, <E;

p3 DG@k_D : = Sqrt @2 pD H2 k !L NIntegrate @Gamma@k, 0, e Exp@-2 x 2DD,
8x, 0, <D;

ptable = Array @p, 8ntot + 1, kmax + 1<, 0 D;
p@0, 0 D = 1;
For @n = 1, n ntot, n ++, 8

s = 0,
For @k = 1, k kmax, k ++, 8

If @n == 1,
8p@0, k D = 0, 8If @PSF 0, p @1, k D = p3 DG@kD, p @1, k D = p2 GL@kDD<<,
p@n, k D = Sum@p@1, k - r D p@n - 1, r D, 8r, 0, k <D

D,
s = s + p@n, k D<

D,
p@n, 0 D = 1 - s<

D;

Return @ptable D;
H* ptable is indexed from 0 while it is returned indexed at 1 *L

E



123

PCH generator.  Returns a table of k counts vs. P(k)

Pch[paramlist_List,limits_List,PSF_:1]:=

 Module[{nmean, e,kmax,ntot,ptotal, P, Ptable,loggtable,logg,summation,
 kave,k,ptable},

 nmean=Abs[paramlist[[1]]];
e=Abs[paramlist[[2]]];

 kmax=limits[[2]];

 ntot=Quantile[PoissonDistribution[nmean],0.9999999 99];
 ptable=Pcharray[paramlist,limits,PSF];

Ptable=Array[ P,{kmax+1,2},0];
 loggtable=Array[logg,{kmax+1,2},0]; summation=0;

 For[k=0,k kmax,k++,{
P[k,0]=logg[k,0]=k;
P[k,1]=Sum[ptable[[i+1,k+1]]((nmean^i)/i!)  Exp[-nmea n],{i,0,ntot}];
logg[k,1]=Log[ P[k,1]]; summation=summation+ P[k,1];
If[summation 0.5&&(summation- P[k,1]) 0.5,kave=k];
}

 ];

 Return[ Ptable];
 ]

Generates a random sequence of counts/sec according to statistics of
atheoretical PCH specified.  N.B.Genraw[] calls PCH[].  M is the number
of data points.

Genraw[paramlist_List,M_,PSF_:1]:=

 Module[{ P,kmax,rawdata, seq, t, s, randk, rand P},

  nmean=paramlist[[1]]; e=paramlist[[2]];
Ptable=Pch[ paramlist,PSF];

  kmax=Max[ Ptable[[All,1]]];
P=Ptable[[All,2]];

  t=1; s=0;
  OpenAppend["raw.dat"];
  While[t M,
    {randk=Random[Integer,{0,kmax}],
      rand P=Random[Real,{0,1}],
      If[rand P P[[randk+1]],(* +1 for indexing...*)

  (*I believe the following criteria is more correc t but it
    takes much longer to compute:

  rand P Random[BinomialDistribution[M, P[[randk+1]]]]/M
    This builds in the k-dependent variations in s(k) for P(k)
    *) 
  {Write["raw.dat",randk], t++}]

      }];

  Close["raw.dat"];
  ]
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Generates a simulated PCH

Simpch @paramlist_List, M_, PSF_: 1 D : =

Module A8nmean, e, kmax, ntotal, p, s, P, Ptable, S, Stable, logS, logStable <,

nmean = paramlist @@1DD;
e = paramlist @@2DD;

Print @ntotal = ,
ntotal = Quantile @PoissonDistribution @nmeanD, 0.999999999 DD;

Print @kmax = , kmax = Quantile @PoissonDistribution @e * nmeanD, 0.99999999 DD;

p2 GL@k_D : = Hp H2 k !LL NIntegrate AH1 + x2L GammaAk, 0, 4  e Ip2 H1 + x2L2ME,

8x, 0, <E;

p3 DG@k_D : =

Sqrt @2 pD H2 k !L NIntegrate @Gamma@k, 0, e Exp@-2 x 2DD, 8x, 0, <D;

Array @p, 8ntotal + 1, kmax + 1<, 0 D;
p@0, 0 D = 1;
For @n = 1, n ntotal, n ++,
8s = 0;

For @k = 1, k kmax, k ++, 8
If @n == 1,
8p@0, k D = 0, If @PSF 0, p @1, k D = p3 DG@kD, p @1, k D = p2 GL@kDD<,
8p@n, k D = Sum@p@1, k - r D p@n - 1, r D, 8r, 0, k <D<

D;
s = s + p@n, k D<

D;
p@n, 0 D = 1 - s<

D;

Ptable = Array @P, kmax + 1, 0 D;
Stable = Array @S, 8kmax + 1, 2 <, 0 D;
logStable = Array @logS, 8kmax + 1, 2 <, 0 D;
For @k = 0, k kmax, k ++,
8P@kD = Sum@p@i, k D HHnmean^ i L i !L Exp@-nmeanD, 8i, 0, ntotal <D,

S@k, 0 D = logS @k, 0 D = k,
S@k, 1 D = P@kD H* Use this if you want pure data *L

<
D;

Return @Stable D;

E
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Simulate an "experimental" PCH from a sequence of counts/sec

Genpch[filename_]:=

 Module[{Ptable,P,kmax,kmin,kdatum,nelements,j,rawf ile,s},

  (*Loop to determine kmax for initializing array s ize.
    Ideally,in C one can dynamically allocate memor y to do this
   *)

  kmin=1000; kmax=0; kdatum=0;
  rawfile=OpenRead[filename];
  While[kdatum "EndOfFile",
    {kdatum=Read[rawfile],
      If[kdatum<kmin, kmin=kdatum];
      If[kdatum>kmax,{kmax=kdatum,Print[kmax]}]}];
  Close[rawfile]; kdatum=0;

  nelements=(kmax-kmin+1);
  Ptable=Array[P,{nelements,2}];
  Ptable[[All,All]]=0;

  (*This is the loop to read in the data into an ar ray whose 
    size was defined above*)
  rawfile=OpenRead[filename];
  While[kdatum "EndOfFile",{kdatum=Read[rawfile],

If[kdatum "EndOfFile",{j=(kdatum-kmin+1),
      If[Ptable[[j,1]] 0,Ptable[[j,1]]=kdatum],Ptable[[j,2]]++}]}];
  Close[rawfile];

  kmin=Min[Ptable[[All,1]]];

  (* normalization to get (fractional) frequency/pr obablility *)
  s=Sum[Ptable[[j,2]],{j,1,nelements}];
  Ptable[[All,2]]/=s;

  Return[Ptable];
  ]
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Chapter 5

Outlook

Since starting this work in 2000, there have been numerous and rapid advances in

the development and application of FCS-based methods; a number of excellent reviews now

exist documenting these advances.26,48, 64 Below, I highlight some of these advances along

with new directions I feel merit further work.

One of the most promising and exciting uses of TCFFM for studying the dynamics

and interactions of cellular components within living cells. The environments within cellular

compartments can be drastically different from those often used in in vitro biochemical

studies, with protein concentrations in vivo often being at least 100 times higher (≥100

mg/mL) than those normally employed in biochemical assays. While a single protein

component in a cell may be present at less than 1% of the total protein, the collectively

high concentration of macromolecules has been predicted to result in significant chemical

non-idealities that dramatically alter both the strength and dynamics of macromolecular

associations. This principle of ”macromolecular crowding” has been suggested to play an
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important role in cell volume regulation, osmotic stress responses, macromolecular drug

efficacy, protein-nucleic acid interactions, cellular homeostasis and metabolism, and signal

transduction.24,209, 210, 216, 273 However, there is yet no direct evidence to indicate that

macromolecular interactions in vivo are significantly different than they are in vitro, and that

crowding effects can explain these differences. Recent FCS diffusional studies have shown,

however, that macromolecular crowding can dramatically affect the diffusability of protein

components within the cell.8,261, 262 While genetic approaches are often used to validate the

in vivo relevance of biochemical measurements, this validation is only qualitative. Absent

thus far from arsenal of experimental methods are reliable techniques by which biochemical

parameters can be quantified in a living cell as is traditionally done in a test tube. TCFFM

offers for the first time, a practical and intrinsic means to measure absolute particle numbers

of fluorescent species from the amplitude of fluctuations correlation functions and photon

count histogram analysis.

The feasibility of TCFFM in qualitatively monitoring the interactions of GFP-Fos

and mRFP-Jun chimeras in living cells was demonstrated recently by Baudendistel et al.

(2005).9 Quantifying the affinity of such interacting proteins via TCFFM remains an im-

portant and groundbreaking goal. In Chapter 3.2.1, I outlined an experimental strategy for

doing this for a bimolecular reactive system, taking into account background fluorescence,

bleed-through, and FRET calibration corrections. Other strategies have been proposed re-

cently.59,72 Baudendistel et al.’s study was done using HeLa mammalian cells, which have

endogenous pools of Fos and Jun that would confound a quantitative analysis at this point.

Currently, no theory exists to account for the presence of “dark” pools among fluorescently
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labeled interacting components. A recent exception is the theory developed by Lieto and

Thompson (2004),156 although their work is limited to 2-dimensional geometries and total in-

ternal reflection-based FFM. In the absence of a general theory, in vivo TCFFM experiments

would need to be performed in cells for which such endogenous pools can be genetically re-

moved (e.g., in the yeast S. cerevisiae), in order to get any quantitatively meaningful results.

The simulation tools described in Chapter 4 may help in studying the consequences of dark

reactant pools and effects of other third-party interacting components on the bimolecular

reactive system of interest. Both scenarios are highly relevant to the types of reactions that

occur within cells. For example, the MAP kinase pathway230 would be a prime system for in

vivo biochemical characterization using fluorescence-based studies as recently demonstrated

by van Drogen et al. (2001).254 The presence of tertiary interactions, however, would make

interpretation of TCFFM data with the current theory difficult.

Both thermodynamic and chemical kinetics of interaction may be studied using

TCFFM and the approach is fundamentally applicable to studies of protein-protein interac-

tions in living cells.64 The potential for TCFFM measurements in cells is exciting because

of the prospects of testing macromolecular crowding predictions and studying questions of

specificity1 and the kinetics of interactions involved in cell signaling events.119,153, 197, 224

1“Specificity” in cell signalling is usually discussed within the framework of thermodynamics; the prefer-
ence of a receptor for a ligand “A” over another ligand “B” is quantified using a ratio of dissociation constants,
or the specificity ratio:

S(A, B) ,
KB

d

KA
d

These dissociation constants describe the interplay between forward and reverse binding constants: Kd =
koff/kon. It is therefore possible to introduce two kinetic specificity factors, σ and ζ, defined as follows:

σ(A,B) ,
kA

on

kB
on

and ζ(A, B) ,
kA

off

kB
off

∋ S(A, B) =
σ(A,B)

ζ(A, B)
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Macromolecular crowding theory predicts that the association of interacting components is

enhanced as a function of the following: (1) increasing concentration of background crowder

macromolecules, and (2) increasing size of interacting components relative to background

macromolecules.273 Crowding theory also predicts that the specificity of a receptor for a lig-

and over another ligand is strongly dependent on the relative sizes of the competing ligands:

in an increasingly crowded media, binding preference shifts to the larger of two ligands.174

These predictions could be readily tested using polyethylene glycol (PEG) or dextrans of

various molecular weights as crowder agents and concatenating inert β-galactosidase or

bovine serum albumin units (∼65 kD each) to components of the model systems described

at the end of Section 3.3.3. Extensions of the simulations described in Chapter 4, Section

4.5.4 would also be useful in testing these predictions; however, these simulations are very

computationally costly, underscoring the need for improved computational approaches for

simulating systems with high particle densities.

The ability of TCFFM to directly report on the chemical “activities” of biomolecules

inside cells can be far more profound than simply deducing the difference between the ratio of

reactant and product particle numbers measured under ideal conditions and under crowded

conditions (see Section 3.3.3). The fluctuation theory of mixtures developed by Kirkwood

and Buff over 50 years ago may be the important, though yet unexploited, bridge.139,169

Kirkwood-Buff solution theory provides a basis for relating particle number fluctuations and

Recasting S(A, B) in terms of σ and ζ can help illumine the kinetic basis for specificity. If σ(A,B) > ζ(A, B),
then kon is the major specificity determinant in the binding of ligands A and B. If σ(A,B) < ζ(A, B),
however, then koff is the major determinant of specificity. The latter case holds in instances where receptor
and ligand are rigid before and after complex formation, as in antibody-hapten systems.191 For reactions
in which there is a disorder-to-order transition upon binding, kon could play an influential role in binding
specificity.58
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non-ideality through the following relations:

kBT

[
∂N i

∂µj

]

V,T,µi6=j

=
N iN jG

KB
ij

V
+ δijN i (5.1)

where kB is Boltzmann’s constant, T is temperature, Ni is the particle number of species i

in the volume V (of a grand canonical ensemble), µj is the chemical potential of species j,

δij is the Kronecker delta function, and GKB
ij is known as the Kirkwood-Buff integral defined

as:

GKB
ij = 4π

∫ ∞

0
[ρij(rij)− 1] r2

ij drij = V

[ 〈δNiδNj〉
〈δNi〉 〈δNj〉

− δij

〈δNi〉

]
(5.2)

where δN is the particle number fluctuation and ρij is the pair or radial distribution function

commonly used in statistical mechanics. From Eqs. 5.1 and 5.2, it is straightforward to

derive a well established thermodynamic-fluctuations relation:89

〈δNiδNj〉 = kBT

[
∂µj

∂N i

]−1

V,T,µl6=j

(5.3)

where we have used the the fact that δN = N−N . Since experiments are typically conducted

under constant pressure and fixed average particle number conditions, (P, N l), rather than

at constant volume and chemical potential, (V, µl),, working with Eq. 5.3 requires a Jacobian

transformation:

∂µj

∂N i

⌋

V,T,µl6=j

=
∂ (µj , V, µ1 . . . µj−1, µj+1 . . .)

∂
(
N i, V, µ1 . . . µj−1, µj+1 . . .

)
⌋

T

=

∂(µj , V,µ1...µj−1,µj+1...)

∂(N i, P,N1,...N i−1,Ni+1...)

⌋

T

∂(V, µ1...µj−1,µj+1...)

∂(P, Ni,...N i−1,Ni+1...)

⌋

T,N i

(5.4)
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where

∂ (n1, n2, n3, . . . , nx)

∂ (d1, d2, d3, . . . , dx)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂n1/∂d1 ∂n1/∂d2 ∂n1/∂d3 ∂n1/∂dx

∂n2/∂d1

∂n3/∂d1
. . .

...

...

∂nx/∂d1 · · · ∂nx/∂dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

From the definition of the chemical potential:

µj = µ◦
j(P, T ) + nAvkBT ln

(
γjN i/N tot

)
(5.5)

where µ◦
j is the standard chemical potential, nAv is Avogadro’s number, and γ is the activity

coefficient, the partial derivatives involved in Eq. 5.4 are as follows:

∂µj

∂N i

⌋

P,T,Nl6=i

= nAvkBT

(
δij

N j

− 1

N tot

+
∂ ln γj

∂N i

)
(5.6)

∂µj

∂P

⌋

T,Nl6=j

=
∂V

∂N j

⌋

P,T,Nl6=i

= v†j (5.7)

∂V

∂N i

⌋

P,T,Nl6=i

= v†i (5.8)

∂V

∂P

⌋

T,Nl

= −V κT (5.9)

where v† is the partial specific volume, a Maxwell relation was used to evaluate ∂µj/∂P ⌋T,Nl6=j
,

and κT , − ∂ ln V/∂P ⌋T,Nl
is the isothermal compressibility. Eqs. 5.1-5.9 provide the ba-

sis for relating particle number fluctuations to statistical mechanical and thermodynamic

quantities for non-ideal solutions. From Eqs. 2.5-2.7, we can express the measured TCFFM

correlation functions as:

Gxy(τ) = ℵxℵy ·
m∑

i

m∑

j

dxy
ij ·

∫
Zij(q, τ) · Ω(q) dq (5.10)
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The precise relationship between 〈δNiδNj〉 in Eq. 5.3 and the spatio-temporal dissipation

function Z(q, τ) of Eq. 5.10 requires further work.

The derivation of explict expressions for Z(q, τ) for a reactive system is not trivial,

even for the simple bimolecular reaction, A + B
kaGGGGGGBFGGGGGG
kb

C, considered in this thesis (see Sec-

tion 2.7). One main difficulty comes from the eigenvalue-eigenfunction calculation approach

used to solve the differential equation governing the relaxation of concentration fluctuations

(Eq. 2.4). For more complicated reactions, analytical expressions may not be possible via

this approach, which would limit the utility of TCFFM in studying chemical systems. This

analytical intractibility – at least with regards to measuring kinetic rate constants – may

be circumvented by a matrix algebra method proposed 30 years ago by Yi-der Chen at the

NIH.35 In this approach, the noise power spectrum (real part of the Fourier transform of the

time correlation function) is analyzed. Chen showed that the noise power spectrum matrix

at zero frequency can be directly related to a reduced form of the kinetic relaxation matrix

M (Eq. 2.21). Little has been done to follow up Chen’s work, especially as it relates to

TCFFM. As more complex reactive systems are studied by fluorescence fluctuation methods,

the Chen matrix method may become necessary.

New methods of analysis may also be necessary for studying fluctuating systems in

which the equilibrium approximation of TCFFM no longer holds. In this regard, the Chen

matrix method may also be applicable in analyzing non-equilibrium systems.36 Qian and

Elson (2004) recently demonstrated how TCFFM could be used diagnostically to show the

existence of a non-equilibrium steady-state system of cycling biochemical reactions. A living

cell is strictly not in equilibrium. While some cellular reactions/events may be considered
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in quasi-equilibrium (within a given experimental measurement time), they are principally

part of a non-equilibrium steady-state network. It is also now clear that many cellular com-

ponents exist in relatively “low copy numbers” and that fluctuations have a fundamental

impact on the cell’s biochemical circuitry.190 While requiring further development, TCFFM

is poised to become an important tool in studies of biological noise. Fundamental to TCFFM

and fluctuation studies are new approaches in processing the information of noisy traces.189

In addition to correlation function analysis, higher correlation moments analysis, and pho-

ton counting histograms, I believe methods based on photon arrival times will be equally

important and merit further study.150,168

Experimentally, at least three technical innovations in FFM methodology merit fur-

ther development. The first is the use of time-gated pulsed excitation along with synchro-

nized gated-detection. Lamb et al. (2000)147 have shown how such a strategy can be used to

alter fluorophore contributions to correlation function data based on fluorescence lifetime.

This approach can be useful for rejecting background fluorescence while improving the sen-

sitivity for a particular fluorescent species. Second, by using pulsed-interleaved-excitation in

TCFFM, whereby one fluorophore is excited and detected before another is excited, spectral

cross-talk/bleed-through can essentially removed.146,179, 250 This greatly simplifies TCFFM

data analysis, although as noted in Section 3.2.1, using two different laser lines may lead to

spurious chromatic differences in focal volume. Nonetheless, published results obtained thus

far through time gating and pulsed excitation demonstrate the promise of incorporating tem-

poral filtering/sorting strategies into TCFFM.146 Finally, expanding TCFFM from a single

focal volume method to a multi-focal-point or imaging approach could be extremely useful for
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studying biochemistry within the inhomogenous cell cytoplasm.186 Spatio-temporal image

correlation methods, first proposed by Nils Petersen a decade ago194 and more thoroughly

developed by Paul Wiseman and co-workers recently,43,55, 101, 140 have proven to be useful

in understanding the dynamics of membrane-associated proteins involved in cell signaling.

Current image FFM approaches, however, are limited to studies of slow diffusion/reactions

due to the point scanning confocal/two-photon implementations that cap temporal resolu-

tion to a few hundreds of ms. This makes studying most chemical and transport dynamics

within the cell practically impossible via FFM. Wide-field microscopic approaches are at-

tractive in being able to “see all at once” though FFM with these approaches have not yet

been tried. There is currently a trade-off between the number of simultaneous parallel vol-

umes that can be probed by image FFM approaches and the sensitivity available through

single point FFM implementations. This is because current imaging CCD detectors fall

short of the sensitivity and low-noise characteristics of the conventionally used avalanche

photodiode detectors (APD). Focusing instead on a small array of points simultaneously

may be an alternative solution to gaining spatial information while retaining detection and

temporal sensitivity. Multi-focal TCFFM was demonstrated recently using 2 single excita-

tion lasers, multiple APDs and a small 2 × 2 array of diffractive elements.88 Multi-focal

TCFFM would also be possible using two-photon excitation61 and over a three-dimensional

spatial array using the innovative method of Eric Betzig.17 With continuing developments

in APD detector array technologies (e.g., those by Sensors Unlimited, Inc., Princeton, NJ)

it may soon be practical to use image/multi-focal TCFFM for studying both temporal and

spatial dynamics of fast intracellular processes.
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Part II

AIDA: A New Adaptive Image

Deconvolution Algorithm for

Microscopy
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Synopsis

In Part II, I describe an Adaptive Image Deconvolution Algorithm (AIDA) for myopic

deconvolution of multi-frame and three-dimensional data acquired through astronomical and

microscopic imaging. AIDA is an extension of the MISTRAL method developed by Mugnier

and co-workers and shown to yield object reconstructions with excellent edge preservation

and photometric precision (J. Opt. Soc. Am. A. 21, 1841 (2004)). Written in Numerical

Python with calls to a robust constrained conjugate gradient method, AIDA has significantly

improved runtimes over the original MISTRAL implementation. Included in AIDA is a

scheme to automatically balance maximum-likelihood estimation and object regularization,

which significantly decreases the amount of time and effort needed to generate satisfactory

reconstructions. I validated AIDA using synthetic data spanning a broad range of signal-to-

noise ratios and image types, and demonstrated the algorithm to be effective for experimental

data from adaptive optics-equipped telescope systems and wide-field microscopy.
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Portions of chapters in this part are reprinted from a manuscript to be submitted for pub-

lication in the Journal of the Optical Society of America-A by Erik F. Y. Hom, Franck

Marchis, Timothy Lee, Sebastian Haase, David Agard, and John Sedat as:

“AIDA: An Adaptive Image Deconvolution algorithm with Application to Multi-Frame and

Three-Dimensional Data”.
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Chapter 6

Theoretical Foundations

6.1 Introduction

Images acquired using any optical system are fundamentally limited in resolution by

diffraction and corrupted by measurement noise. Aberrations intrinsic to the optical system

and imaging medium result in further degradation and distortions of the observed images.

In ground-based astronomical imaging, atmospheric turbulence is the primary source of

aberrations. In microscopic/biological imaging, significant aberrations arise as a result of

index of refraction inhomogenieties within the sample under study.

Aberration artifacts can be largely corrected using adaptive optics (AO) methods.215

Limited by the spatial and/or temporal response of AO hardware, however, such corrections

remain imperfect. AO-corrected images are often contaminated by residual blurring that can

significantly reduce the contrast of fine image details. Significant de-noising and improved

image contrast can be obtained using post-acquisition deconvolution techniques,38 implying

that both hardware and software correction strategies are needed for optimal image recovery.
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Deconvolution is an explicit attempt to model and computationally compensate for

measurement non-idealities. Classic approaches presume that the imaging point spread

function (PSF) of the optical system is exactly known. In practice, however, the PSF is

estimated either theoretically84,255 or by imaging a sub-resolution point-like object (e.g.,

guide star/fluorescent bead).105,151 Such estimates may deviate significantly from the true

PSF, yet no margin is given in classical methods for the PSF to adjust to a more appropriate

estimate. Using a fixed, imperfect PSF thus inherently limits one’s ability to generate the

most accurate and highest resolution object reconstructions.

Myopic or blind deconvolution approaches allow an imprecise or unknown PSF esti-

mate to adapt to a more correct form and thereby offer the possibility of improved object

reconstructions over classical methods. The success of these myopic/blind methods, how-

ever, is dependent upon a priori constraints that compensate for the lack of information

associated with having the PSF be variable.4,15, 106, 227, 244

In this chapter, I describe an Adaptive Image Deconvolution Algorithm, AIDA, for

myopic deconvolution of two- and three-dimensional image data within a maximum a poste-

riori (MAP) framework. AIDA is a de novo implementation and extension of the proprietary

MISTRAL (Myopic Iterative STep-preserving Restoration ALgorithm) method, originally

developed by Mugnier and co-workers177 to effectively deconvolve a broad range of astro-

nomical targets with superior photometric restoration and sharp-edge feature preservation.

I have significantly improved AIDA’s runtime performance over the original MISTRAL code

and have developed a simple yet effective scheme to balance maximum-likelihood estimation

with object regularization in the deconvolution process. Moreover, AIDA has capabilities to
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process multiple image frames simultaneously, thereby leveraging the information available

through multiple observations.38,227

6.2 Adaptive Deconvolution Approach

6.2.1 Imaging Model

Consider an image, i(r), of an object, o(r), observed through a telescope or micro-

scope system and measured using a CCD detector array. This image may be viewed as a

probabilistic mapping of the object’s brightness distribution to an intensity count distribu-

tion sampled over the discrete pixel/voxel position, r: o(r) 7→ i(r). Assuming that: (i) image

formation is linear and space invariant (isoplanatic approximation), (ii) the response of each

CCD pixel element is equivalent and independent of all others, and (iii) signal-independent

Gaussian and signal-dependent Poisson noise sources are present,110 the image formed can

be described by the following equation:

i(r) = o(r)⊗ h(r)︸ ︷︷ ︸
g(r)

◦ňP (r) + ňG (6.1)

where h(r) is the PSF, g(r) denotes the noise-free image, ňG(r) is a Gaussian random

variable characterized by variance σ2
G, and ňP (r) represents a stochastic Poisson process

with variance σ2
P ∼ g(r). The operator, ⊗, denotes a convolution and ◦ denotes a pixel-by-

pixel operation. While the response of CCD pixel elements is rarely uniform in practice, I

will assume that any non-uniformity can be accounted for through image flat-fielding with

neglible effect on the validity of Eq. (6.1). Moreover, I assume that if any constant image

background is present, it can be subtracted from i(r) so that ňG(r) is zero-centered.



141

When both Gaussian and Poisson noise sources are present and images are not

photon-limited, a non-stationary but additive weighted-Gaussian noise model with variance:

w(r) , σ2
ň(r)(r) = σ2

G + σ2
P (r) (6.2)

is a very good approximation.152,177 With this noise model, the operator, ◦, in Eq. (6.1)

may be replaced by simple addition and Eq. (6.1) also expressed as:

I(k) = O(k)H(k) + Ň(k) (6.3)

where capitalization denotes the Fourier Transform of the variable, H(k) is the optical trans-

fer function (OTF), and k is the conjugate spatial frequency. For brevity, the dependence

on r and k will often be implicit hereafter.

6.2.2 Bayesian Deconvolution Framework

The goal of deconvolution is to invert Eq. (6.1). Classical deconvolution approaches

aim to find the best estimate, ô, of the true object given a single image frame, i, and an

exactly known PSF convolution kernel, h. Such approaches are ill-posed (lacking a unique

solution due to insufficient information) and ill-conditioned (numerically sensitive to small

errors and thus unstable) for two reasons: (1) h is intrinsically bandlimited by the resolution

limit of the optical system, and (2) noise is present at frequencies beyond the bandlimit.15,52

This situation is further complicated in the case of myopic or blind deconvolution where the

characteristics of the PSF kernel are poorly known, if at all. Because of ill-posedness,

the quality of the deconvolution depends critically on how much a priori information is

incorporated into the inversion process.15,176 This a priori information can be divided into

three classes related to ň, o, and h.
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Owing to the presence of noise, deconvolution may be viewed as a problem of stochas-

tic inversion. It is helpful to state the goal of deconvolution in Bayesian terms, namely to

maximize the a posteriori probability of observing the object, o, and point spread function,

h, given an image, i, and a set of model assumptions, a:

p(o, h|i, a) =
p(i|o, h, a)p(o|a)p(h|a)

p(i|a)
(6.4)

p(i|o, h, a) is the posterior probability density of observing an image, i, as expressed by the

forward imaging equation, Eq. (6.1). This term is the focus of maximum-likelihood methods,

which aim to optimize the fidelity of the observed data to a set of parameters and subject to a

particular noise model. p(o|a), p(h|a), and p(i|a) are the a priori probability distributions for

the object, PSF, and image, respectively. These a priori distributions must be inferred based

on the assumptions, a. In classical deconvolution methods for which the PSF is known, for

example, p(h|a) is assumed to be a constant. In maximum entropy deconvolution methods,

p(o|a) is set implictly by the definition of the entropy measure used.242 When the positivity

of the variables o, h, and i can be assumed (e.g., under incoherent imaging conditions), the

a priori probabilities for negative values can be set to zero.

Each probability term in Eq. (6.4) may be interpreted as a Gibbs distribution with

energy cost function, J(x), and partition function, Z(x) ,
∫
x exp[−J(x)]dx:16,81

p(x) = exp [−J(x)] /Z(x) (6.5)

so that:

p(o, h|i, a) = exp[−J(o, h|i, a)]/Z

= (Zi/ZnZoZhZ) exp[−Jn(i|o, h, a) − Jo(o|a) − Jh(h|a) + Ji(i|a)] (6.6)
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where I have used the subscripts “n” to denote noise model-related data fidelity terms,

“o” to denote the terms arising from the a priori object distribution, “h” to denote the

terms arising from the a priori assumptions for the PSF, and “i ” to denote the terms arising

from the a priori distribution of images. The mode or best estimate for both o and h can

then be found by maximizing Eq. (6.2.2) with respect to these variables or equivalently, by

minimizing the corresponding negative log-likelihood, J(o, h|i, a):

[
ô, ĥ
]

= arg min
[o,h]

{J(o, h|i, a)}

= arg min
[o,h]

{Jn(i|o, h, a) + Jo(o|a) + Jh(h|a)} (6.7)

Since Ji(i|a) is formally independent of variables o and h given the set of assumptions a,

I have dropped this term in Eq. (6.7), along with a constant term involving the ratio of

partition functions.

6.2.3 Myopic Deconvolution with Edge-Preservation

Our goal is to minimize Eq. (6.7) subject to a specific set of model assumptions for

Jn(i|o, h, a), Jo(o|a), and Jh(h|a). I follow the recommendations of Mugnier et al.177 in

assigning functional forms to each of these component terms as detailed below.

6.2.3.1 Data Fidelity Term: Jn(i|o, h, a)

Assuming the mixed-Gaussian noise model of Eq. (6.2), the fidelity of the recon-

structed object ô and PSF ĥ with respect to the observed image i can be described by the

following weighted maximum-likelihood term:
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Jn(i|o, h, a) =
1

2

∑

r

(
i(r)− ô(r)⊗ ĥ(r)

)2

w(r)
(6.8)

Deconvolution approaches which are based solely on this term often lead to noise amplifica-

tion and severe ringing artifacts. The Landweber method and Richardson-Lucy/expectation-

maximization algorithm are examples of such approaches, which assume a stationary-Gaussian

and Poisson noise model for w(r), respectively.15,242 To minimize noise amplification ar-

tifacts and find a unique and stable solution in practice, Eq. (6.8) must be “regularized.”

In the aforementioned methods, regularization is accomplished empirically by limiting the

number of deconvolution iterations.

6.2.3.2 Edge-preserving Object Term: Jo(o|a)

Eq. (6.8) may also be regularized through a quadratic penalty term based on an

object’s spatial gradient.52,176 Quadratic regularization, however, often yields results that

are oversmoothed and have compromised image contrast when applied uniformly to all object

features. Using a roughness penalty that is instead sub-quadratic for regions of high contrast

has been very successful in preserving “edges” and other sharp object features.22,31, 52, 247 The

underlying assumption here is that large gradient discontinuities in the image arise from

genuine object features and should be penalized comparatively less than small gradients due

to noisy background features. The edge-preserving prior originally proposed by Brette and

Idier25 is used here:

Jo(o|a) = λo

∑

r

Φ (γ (ô, θr)) (6.9)
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Φ(γ) , γ − ln (1 + γ) (6.10)

γ (ô, θr) ,

(‖∇ô(r)‖
θr

)
(6.11)

where‖∇ô(r)‖ ,
[
(∇xô(r))2 + (∇yô(r))

2 + (∇z ô(r))
2
]1/2

is the norm of the spatial gradient

of the object, θr and λo are auxillary parameters or “hyperparameters” of the object prior

distribution, γ is a “reduced” gradient modulus, and Φ(γ) is called the “clique” potential.

Φ(γ) is a function that characterizes the local object texture at a position r based

on a subset or “clique” of neighboring pixels. This clique is defined in practice through the

calculation of the gradient norm in Eq. (6.11). For large values of γ, Φ(γ) ≈ γ whereas for

small values of γ, Φ(γ) = γ − (γ − γ2/2 + ...) ≈ γ2/2, resulting in so-called L1-L2 (linear-

quadratic) behavior. Numerous L1-L2 regularization functionals have been suggested in

the literature (e.g., see Teboul et al.247). The advantage of Eq. (6.10) over other forms is

that it is convex and its derivative with respect to ô does not involve any transcendental

or exponential functions, making cost function optimization easier and less expensive (see

Section 3.3).

The scaling parameter λo plays an important role in balancing maximum-likelihood

fidelity to the data with the preservation of high contrast features in the object estimate.

The hyperparameter, θr, sets the width and shape of the Gibbs distribution in Eq. (6.5). It

governs the point at which regularization transitions from being quadratic to being linear.

In Mugnier et al.’s treatment,177 the same scalar pair of values (λo, θ) is applied to each

pixel element of the object. I have found, however, that using an inhomogenous hyperpa-

rameter model as advocated by others,120,122, 123, 221 in which θr is pixel-/voxel-dependent

(as indicated by the subscript) and adapted to the local object texture, results in better
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deconvolution results.

6.2.3.3 Harmonic Optical Transfer Function Constraint: Jh(h|a)

To myopically reconstruct the PSF, the following Fourier domain constraint is used:

Jh(h|a) =
λH

2

∑

k

∣∣∣Ĥ(k)− H̄(k)
∣∣∣
2

v(k)
(6.12)

where λH controls the degree of the OTF regularization/constraint relative to the data

fidelity term (Eq. (6.8)), Ĥ(k) is the estimate of the OTF, H(k) is a measured OTF, and

the overbar denotes an average. v(k) is the OTF sampling variance or power spectral density

defined over the sampled OTFs as:

v(k) =
〈∣∣Hi(k)− H̄(k)

∣∣2
〉

=
〈
|Hi(k)|2

〉
−
∣∣H̄(k)

∣∣2 (6.13)

v(k) serves as a spring constant to harmonically constrain each OTF k -component to a mean

value, consistent with a set of measured OTFs. Eq. (6.12) intrinsically handles bandlimited-

ness of the OTF; frequencies beyond the optical system’s resolution are essentially ignored

since they are not represented in the measured samples. Conan and co-workers42,76 have

shown that this harmonic OTF constraint performs noticeably better towards recovering

the true OTF than a simple bandlimited constraint typically used in blind deconvolution

methods.106,126 Mugnier et al.177 advocate using an harmonic constraint for each spatial

frequency, |k|, which is functionally equivalent to using a radially-averaged v(k). I have

found, however, that using Eq. (6.12) is sometimes more robust.
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6.2.4 Extension to Multiple Frame Data

The focus thus far has been on a single image frame. One of our goals in developing

AIDA was to combine the demonstrated strengths of MISTRAL with the multiple frame

synthesis capabilities available in a method such as IDAC, the Iterative Deconvolution Al-

gorithm in C.38,40, 126 Christou et al.40 have argued that the use of multiple observations

can serve as an additional deconvolution constraint: the ratio of unknown variables to mea-

sured quantities being reduced from 2:1 for a single image frame to M + 1 : M for M

image frame observations. The simultaneous analysis of multiple observations implicitly ac-

counts for correlations that may exist among variables as well as between variables and the

data.245 Consequently, multiple frame deconvolution should result in sytematically lower

error bounds with more reliable results than when individual image frames are deconvolved

separately or when multiple frames are merged into an averaged “shift-and-added” image

(i.e., an image generated by averaging the image frames after appropriate pixel shifts are

made to maximize image correlation) and then deconvolved.37–39,118, 227, 228

The extension to “multi-frame” deconvolution is straightforward. For multiple image

observations, Eq. (6.1) may be expressed generally in vector form:





i1 = o1 ⊗ h1 + ň1

i2 = o2 ⊗ h2 + ň2

...

iM = oM ⊗ hM + ňM





≡ i(r) = o(r)⊗̈h(r)︸ ︷︷ ︸
g(r)

+ň(r) (6.14)

where ⊗̈ specifies a convolution performed over appropriate oj : hj pairs and I have assumed

the noise model of Eq. (6.2). In general, for Mi measured images, there may be Mo unique
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objects and Mh unique PSFs: Mi ≥Mo ≥Mh. In addition to “mono-frame” datasets where

Mi = Mo = Mh = 1, I consider two multi-frame dataset types: (i) “multi-PSF” datasets

where Mi = Mh and Mo = 1, and (ii) “multi-object” datasets where Mi = Mo and Mh = 1.

Multi-PSF deconvolution may be used to process adaptive optics images for which there is a

common target object but a variable PSF per image observation. Multi-object deconvolution

may be used to process time-lapsed microscopy images for which a single common PSF does

not change between frames.

The cost function to be minimized for multi-PSF deconvolution is given by:

JM_PSF (o,h|i, a) =





1

2

Mh∑

β



∑

r

(
iβ − ô⊗ ĥβ

)2

wβ
+ λhβ

∑

k

∣∣∣Ĥβ − H̄
∣∣∣
2

v








+ λo

∑

r

Φ (γ (ô, θr))

(6.15)

and for multi-object deconvolution by:

JM_object(o, h|i, a) =





Mo∑

α



∑

r




(
iα − ôα ⊗ ĥ

)2

2wα
+ λoαΦ (γ (ôα, θr,α))











+
λh

2

∑

k

∣∣∣Ĥ − H̄
∣∣∣
2

v

(6.16)

where α and β are used to index multiple objects and PSFs, respectively.
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Chapter 7

Implemention Strategy

7.1 Algorithmic Overview

I implemented AIDA using Numerical Python/Numarray,90 with calls to a specialized

C++ conjugate gradient optimizer (see Section 3.2), which were handled by code generated

using the Simplified Wrapper and Interface Generator (SWIG).11,12 Fast Fourier Transforms

were computed using the FFTW(v. 2.1.5) subroutine library75 in lieu of the standard

Numarray FFTPACK library, resulting in about a factor of 2 improvement in the overall

speed of the algorithm. A schematic of the algorithm is shown in Figure 7.1.

AIDA begins with a pre-processing stage to estimate data fidelity weights, w (see

below, Sec. 7.3), and to calculate the mean OTF, H, and OTF variance, v. It is assumed

that all the images supplied have been properly flat-fielded and optionally background-

subtracted. In cases where the image does not have negative pixels following background

subtraction (as is the case for an image without true “dark” areas), the user must either

supply a value for σG or a dark image from which it can be estimated.
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Figure 7.1: AIDA optimization protocol. (A) Set-up and variable initialization stage.
Equation numbers for variables are shown in curly brackets. Mo and Mh are the number of
objects and PSFs to be estimated, respectively. (B) Deconvolution scheme. The subscript
j indexes the “optimization round,” which consists of two partial conjugate gradient (PCG)
estimation loops (each indicated by a dashed-box): one for the object(s), ô, followed by
one for the PSF(s), ĥ. The deconvolution is stopped after a max_optimization_count num-
ber of sequential PCG estimation loops have converged (see below). (C) Schematic of the
PCG estimation loop used to estimate the object(s) or PSF(s) (indicated generically by the
variable (x̂j)) for the j th optimization round. ∆p is an Mo- or Mh-length array of root-mean-
square-deviations between sequential PCG iterations used to monitor convergence progress.
Minimization of each x̂j in x̂j is continued until ∆p falls below some PCG_tolerance for a
total of convergence_count times or until a rising_rmsd_count number of “uphill” moves is
registered (default = 3 for both). Each “PCG iteration” entails a steepest descent minimiza-
tion step followed by up to ω − 1 conjugate gradient (CG) steps for the set of unconverged
object or PSF estimates. When the fraction of object(s) or PSF(s) that have converged is
> ζ, the PCG estimation is stopped and convergence for that PCG estimation loop is noted.
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The present version of AIDA expects images of reference PSFs (e.g., of a guide star

or sub-diffraction sized bead), which are normalized to 1 and used to compute H and v. If

only one PSF image is supplied, v is calculated based on the noise statistics of the image as

for w. AIDA is equipped with an optional clean-up module to remove hot/dark pixels from

these PSF images and remove noise according to some user-defined threshold. An option

to use a radially-averaged OTF variance is provided to enable the harmonic constraint of

spatial frequencies as implemented in MISTRAL177 (see Section 6.2.3.3).

The default mode for AIDA uses automatic hyperparameter settings as described

below in Section 7.4. The option to directly specify hyperparameter values or a scale factor

by which to multiply the automatic estimates is available for fine-tuning purposes. For mono-

frame deconvolutions, AIDA is also capable of performing unsupervised deconvolutions over

a grid of λo and θr hyperparameter values centered about automatical estimates or user-

defined centers.

Although it is possible to simultaneously estimate both sets of objects, ô, and PSFs, ĥ,

by stacking them into a single variable to be optimized (see Eq. (6.7)), doing so could result

in slower convergence since significant differences in magnitude between ô and ĥ can result in

a skewed optimization landscape and ill-conditioning.10 Although variable renormalization

could solve this issue, I have chosen instead to alternate between the minimization of ô and

ĥ in the current version of AIDA as advocated by Mugnier et al.177

For non-quadratic cost functions, solution convergence can often be improved by

periodically restarting the conjugate gradient (CG) minimization after a defined number of

steps to interlace steepest descent steps with CG steps. I have found this “partial” conjugate
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gradient (PCG) approach10 to be more effective than a simple CG approach in minimizing

the quasi-quadratic cost functions Eqs. (6.16) and (6.15), consistent with the findings of

Mugnier et al.177

Starting with each PSF in ĥ set to the the mean of the sampled PSFs (F−1[H]),

each object in ô is optimized via a PCG approach. CG optimization is capped by a set

number of iterations, ω (typically 25), constituting a “CG block” and repeated for πo “PCG

iterations.” The resulting estimate for ô is then fixed and each PSF in ĥ optimized via

πh PCG iterations. The multi-frame estimates ô and ĥ are alternatively optimized, with

each pair of estimations constituting one AIDA “optimization round.” The number of PCG

iterations per optimization round for ô and ĥ is typically increased progressively, with the

possibility of separate PCG iteration plans for ô and ĥ. By default, the number of PCG

iterations executed per optimization round is given by: PCG[j] = 2(j−1)+1, where j is the

round number from 1 to η, the maximum default number of optimization rounds (typically

8). Progressively increasing the number PCG iterations in this manner ensures that the

optimization of the current variable (e.g., ô) does not get fixed too quickly relative to the

other variable (e.g., ĥ), which may yet be suboptimal. Multi-frame optimization of ô and ĥ

is continued until the fraction of individual ôj and ĥj frame estimates that have converged

is greater than some tolerance, ζ (typically 0.9), or until a specified maximum number

of optimization rounds is reached. The convergence of each ôj or ĥj frame optimization

is achieved when the root-mean-square deviation between two consecutive PCG iteration

estimates falls below a specified tolerance for at least three times within one optimization

round.
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7.2 Constrained Conjugate Gradient Minimization

AIDA’s quasi-quadratic cost function was minimized using a Constrained Conjugate

Gradient (CCG) algorithm developed by Goodman and co-workers87 and freely available as

part of the EDEN Holographic Method package.239,246 This algorithm incorporates three

significant advances over the conventional conjugate gradient method.201 First, to ensure

that solutions are positive (or within a user specified-bound) a projected gradient or active

sets approach is used.10 Johnston et al.128 have shown that such an approach is superior

to maintaining solution positivity via reparametrization since reparametrization often leads

to the creation of spurious minima that can complicate the optimization process. Second,

to prevent “zig-zagging” behavior that can arise when using an active sets approach or min-

imizing non-quadratic functions, an adaptive “bending” line search is used to set the most

effective conjugate direction step size (typically called α). Third, to better preserve conju-

gacy between successive directions, the conjugate gradient deflection parameter (typically

called β) is computed using the Hestenes-Stiefel formula instead of the standard Fletcher-

Reeves or Polak-Ribiere formulas.10

7.3 Cost Function and Derivative Calculations

To facilitate modification and future developments of AIDA, the calculation of the

cost function was written in an extensible manner in which cost function terms may be

turned on or off. For computational efficiency, only terms which are dependent upon the

variable being estimated are computed (e.g., for ôj, data-fidelity and object regularization

terms but not the OTF constraint are computed).



154

The data fidelity weights for each image frame, w(r), (see Eq. 6.8) can be computed

as a sum of Gaussian and Poissonian contributions according to Eq. 6.2 as suggested by

Mugnier et al.:177

w(r) =
π

2

(
〈i(r)〉≤0

)2

︸ ︷︷ ︸
σ2

G

+ max [i(r), 0]︸ ︷︷ ︸
σ2

P

(7.1)

The first term accounts for Gaussian detection/electronic readout noise, σ2
G, which can be

estimated using the average over all negative pixels in the image. For images of extended

objects that do not have any negative-pixel areas (common in microscopy), a separate “dark”

image is required from which σ2
G can be computed directly. The second term in Eq. 7.1

accounts for Poisson photonic noise, σ2
P ; this term is derived from the fact that the variance

equals the mean and the mode for a Poisson distribution. Although this term should techni-

cally be determined using a noise-free image estimate, σ2
P = max [ĝ(r), 0] , I did not observe

a significant improvement in deconvolution quality to merit using this more accurate though

algorithmically complicated approach. In fact, I found that using ĝ to recursively estimate

w can sometimes lead to an unstable algorithm and sub-optimal reconstructions, especially

in conjunction with the automatic hyperparameter estimation scheme described below in

Section 3.4.

The estimates for the variances in Eq. 7.1 implicitly assume that i has been properly

background subtracted so as to lead to a properly centered and sampled Gaussian distri-

bution for readout noise. Only noise arising from the image formation is accounted for

here. “Scientific noise” (e.g., cellular autofluorescence in microscopy imaging), which may

be irrelevant to image features of scientific interest, are not accounted for here explicitly but

treated as an optically genuine component of the object under observation.
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The clique potential used for edge-preserving object regularization requires that ef-

fective spatial gradients of the object estimate be computed. This can be done efficiently

by convolving the object estimate with a gradient mask:

∇rô(r) = ô(r)⊗ χGr (7.2)

where Gr is a 3×3 matrix operator corresponding to the gradient of interest in the direction

r, and χ is a scaling normalization factor. Many different gradient masks that have been

developed for image segmentation may be used.200,242 I prefer masks based on the work of

Frei and Chen73 since it is equally effective on horizontal, vertical, and diagonal edges, and

I have found these operators to be more effective in recovering subtle object features than

traditional nearest neighbor finite difference approximations (see e.g., Press et al. (1992),

Section 5.7201). In 2 dimensions, this is given by:

Gx ,




1 0 −1

√
2 0 −

√
2

1 0 −1




; Gy ,




−1 −
√

2 −1

0 0 0

1
√

2 1




(7.3)

and in 3 dimensions:
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where χ =
(
2 +
√

2
)−1

and ζ is a z -resolution compensation factor. In three-dimensional

microscopic imaging, the OTF support in the axial direction is significantly smaller than in

the radial direction. This leads to a greater loss of information and thus increased blurring

in the z -direction relative to x - or y-directions; ζ is used to compensate for a more diffuse

gradient observed in the z -direction of the image stack. Given the lateral and axial resolu-

tions of a microscope, rxy and rz, ζ can be estimated as ζ ∼ rxy/rz . If we define optical

resolution as the distance between the central maximum and first minimum of the lateral

or axial component of a PSF Airy disk, the lateral and axial resolutions of a microscope are

given by rxy = 0.6λem/NA and rz = 2λemn/NA2, where λem is the wavelength of light, n is

the index of refraction of the sample, and NA is the numerical aperture of the microscope

objective lens.129 Thus,

ζ ∼ 3.33n/NA (7.5)

and using values typical in microscopic imaging, n ≈ 1.33 and NA≈ 1.4, ζ ≈ 3.

Minimizing the AIDA cost function (Eq. 6.16 or 6.15) with the conjugate gradient

method requires analytical derivatives with respect to both object and PSF estimates. These

estimated can be determined through functional differentiation218 and are given by:

∂J

∂oα
=





NPSF s∑

β

ĥβ ⋆

(
ôα ⊗ ĥβ − iβ

wβ

)
+

λoα

θ2
r

( ∇2
rôα

1 + γ (ôα, θr)

)
(7.6)

∂J

∂hβ
=





Nobjects∑

α

ôα ⋆

(
ôα ⊗ ĥβ − ia

wa

)
+ λhβ

(Nd + 1)

2
F−1




(
Ĥβ − H̄

)

v


 (7.7)

where ⋆ denotes a correlation. In practice, the terms in curly brackets are computed in the

Fourier domain, in accordance with the convolution- and correlation-Fourier theorems.23,201

I assume that the arrays (or region-of-interest sub-arrays) used in Fourier calculations are
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sufficiently padded so that boundary aliasing problems can be ignored. In computing the

derivative of the OTF constraint with respect to h (right most term in Eq. 7.7), I have

used the property of the Discrete Fourier Transform, F [x∗] = NdF−1[x], where x∗ is the

conjugate of x.

The spatial Laplacian of the object in Eq. 7.6 may be computed by convolving the

spatial object gradient with a gradient mask (Eq. 7.2) as proposed by Mugnier et al.178

Alternatively, the object may be convolved directly with the following Laplacian operator

mask, which I find to be faster and yield finer results:

∇2
rô = ô(r)⊗ χL (7.8)

where in 2 dimensions:
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and in 3 dimensions:
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(7.10)

where ζ once again compensates for the relative loss in resolution in the z - vs. xy-directions

(typically ∼ 3).
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7.4 Automatic Hyperparameter Estimation

Methods to estimate the hyperparameters that tune object regularization terms like

Eq. 6.9 have been a subject of considerable attention.41,78, 86, 114, 120–123, 198, 221, 272 A num-

ber of approaches have been advocated including L-curve analysis and generalized cross-

validation.78,86 These heuristic methods are computationally expensive, essentially requir-

ing that multiple deconvolutions be performed over a grid of λo values for each image to be

processed. Other more advanced and theoretically rigorous approaches attempt to optimize

hyperparameters jointly with object reconstruction.78,198, 272 These methods aim to maxi-

mize the marginal likelihood (ML) of observing the measured image given an incomplete data

set over the space of hyperparameters: (θ̂r, λ̂o) = arg maxθr ,λo
p(i|θr, λo); this is functionally

equivalent to maximizing the ratio of partition functions, Z/ZoZn (cf. Eq. 6.2.2), with re-

spect to the hyperparameter variables.123,272 In practice, these methods require non-trivial

Monte Carlo expectation-maximization sampling steps prior to object reconstruction, which

increases the computational expense of a deconvolution considerably.121,221 In contrast to

all of these methods, our AIDA approach directly calculates hyperparameter estimates using

a semi-empirically based scheme, forgoing any stochasic sampling steps or comprehensive

grid searching.

My initial efforts to derive an automatic scheme were founded upon a large collection

of deconvolution results generated over a grid of θr and λo values spanning several orders

of magnitude. I used a variety of different two-dimensional (2D) object types and natural

scenes to build a reference set of images covering a broad range of signal-to-noise ratios.

A subset of these reference objects is shown in Figure 7.2. These reference images were
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Figure 7.2: Subset of reference objects used to test AIDA and establish its auto-
matic hyperparameter estimation scheme. Each object (with max intensity set to 100,
1000, or 10000) was blurred with a Gaussian PSF (FWHM=4 pixels), had intensity-based
Poisson noise and Gaussian detector noise added according to Eq. (8.1) to yield a series of
images with SNR=-10, -3, 0, 7, 10, 17, 20, or 27 dB.

used to assess deconvolution quality as a function of hyperparameter pairs. From a grid

search over hyperparameters, a “plane” of acceptable (θr, λo) solutions (determined by visual

inspection) were found to exist, in agreement with observations by Jalobeanu et al.122 This

finding implies that one hyperparameter may be defined while the other hyperparameter

is optimally adjusted to balance data-fidelity with object regularization. Within the AIDA

cost function framework, I found a balance can be achieved by setting θr according to:

θr ,
√

w(r)/σG (7.11)

and computing λo directly via the approach detailed below .

From Eqs. (6.8) and (6.9), the following partition function-like integrals may be

defined over the distribution of possible data-model variations, δ ≡ i − o ⊗ h, and the

distribution of possible gradient norm values for each pixel element:

ζn(r)⌋δ ,

∫

δ
exp

[
− (δr)

2 /2w(r)
]
dδ (7.12)
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ζo(r)⌋‖∇o‖ ,

∫

‖∇o(r)‖
exp

[
−λo

(‖∇o(r)‖
θ(r)

− ln

(
1 +
‖∇o(r)‖

θ(r)

))]
d ‖∇o(r)‖ (7.13)

A convenient relation linking θr and λo can be obtained by equating these integrals:

ζn(r)⌋δ
.
= ζo(r)⌋‖∇o‖

√
2πw(r) = θre

λ

∫ ∞

1
e−λt/t−λdt

≈ θr

(
1

λo
+ 1

)
(7.14)

where the approximation holds for λo . 10. An element-by-element equivalence of these

integrals essentially assumes that the Gibbs distribution (and thus partition function Z ) of

Eq.(6.5) can be represented as a product of separable functions (i.e., a mean-field approxi-

mation).272 Solving for λo in Eq. 7.14:

λo =
(√

2πw(r)/θr − 1
)−1

(7.15)

This definition along with the vector definition of θr, Eq. 7.11, leads to a simple, pixel-

independent scalar expression for λo:

λo ,
(√

2πσG − 1
)−1

(7.16)

From Eq. 7.1 and given the quantized nature of real, noisy data, σG is guaranteed to be

≥
√

π/2 such that θr and λo are well-defined by Eqs. 7.11 and 7.16. Using w(r) as defined

in Eq. 7.1 and object gradients and Laplacians calculated according to Eqs. 7.2-7.10, this

estimation scheme is quite robust. In rare cases where this scheme over-regularizes results

(likely due to noise model mismatch), I have found that simply scaling the λo hyperparameter

estimate down, typically by no more than by a factor of 10, gives optimal reconstructions.

It is important to note that careful estimates of σG and w(r) in accordance with Eq. 7.1

are important for the success of this approach.
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For the OTF constraint, a quadratic term in real space Eq. 6.8 must be balanced

with a quadratic term in Fourier space Eq. 6.12. I have found that this balance can be

roughly achieved by setting:

λH , 1/Nd (7.17)

where Nd is the number of pixel/voxel elements. The heuristic motivation for this comes

from the power conservation relation of Parseval’s Theorem, in which
∑N−1

r=0 |x(r)|2 =

(1/Nd)
∑N−1

k=0 |x̃(k)|2.
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Chapter 8

Application

8.1 Validation and Application to Mono-Frame Data

In Figure 8.1, I present deconvolution results for one of our synthesized datasets

to demonstrate the effectiveness of the automatic estimation scheme. The “brain” object

(256×256 pixels) shown in Figure 8.1A is from a magnetic resonance imaging scan available

from the Computer Vision Group at the University of Granada.184 This object was convolved

with a Gaussian PSF of full-width-half-maximum (FWHM) of 4 pixels and normalized to a

maximum intensity of 1000. This “noise-free” image, g(r), was subjected to a Poisson noise

transformation with varying amounts of Gaussian noise subsequently added (mimicking CCD

detector read-out noise) according to a pre-determined image signal-to-noise ratio (SNR),

which I define as:

SNR , 10 log10
var[g(r)]

〈w(r)〉r
(8.1)

where var[g(r)] is the variance of the noise-free image.15
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Figure 8.1: Deconvolution test results using automatic hyperparameter estima-
tion. (A) Left, original 256 × 256 pixel “brain” object with intensities from 0-1000 (o);
right, convolved noise-free image (g) with Gaussian PSF (h) inset (FWHM=4 pixels). (B)
Deconvolution series for image SNR of -10, 10, and 20 dB; left, convolved image with Poisson
and Gaussian noise (i); right, corresponding deconvolution result (ô).
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Significant denoising can be observed after deconvolution (Figure 8.1B) with a con-

trast enhancement of about 50%. Average contrast improvement was computed by multiple

(N ≥ 6) comparisons of average intensities over an area of 3 × 3 pixels within a region of

interest (IROI) versues over an adjacent background region (Ibackground) (separated by at

least 4 pixels, the FWHM of the PSF):

∆Contrast ,

〈 〈IROI〉area − 〈Ibackground〉area

〈Ibackground〉area

〉

N samples

(8.2)

Using the definition:

∆SNR , 10 log10

‖i− o‖
‖ô− o‖ (8.3)

I see signal-to-noise improvements of 10, 4.8, and 3 dB for the deconvolution results of

SNR=1, 10, and 20 dB images, respectively.

Figure 8.2 shows the deconvolution results for the SNR=100 image of Figure 8.1

over a grid of λo or θr values that are 20 times larger or smaller than those automatically

estimated. Using the estimated hyperparameters (Figure 8.2, center) gave the best visual

results and balance between data-fidelity and regularization. Using the estimated λ̂o and a

value of θr = θ̂r/20 also gave acceptable results (though contrast was slightly compromised).

In general, the deconvolution results were generally less sensitive to changes in θr than λo

over the range of values examined. Although not shown, note that AIDA’s hyperparameter

estimation scheme works equally well for a range of maximum intensity scalings (i.e., images

for which the maximum intensity of the noise-free image is 100 or 10,000). Deconvolution

results were typically be generated within 30− 90 sec per (256× 256) image pixels on a 2.8

GHz Intel Xeon Linux machine.

Below, I demonstrate the effectiveness of AIDA in myopically deconvolving real imag-
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Figure 8.2: Automatic hyperparameter estimation is nearly optimal. Deconvolution
results for the SNR=100 brain image from Figure 8.1, over a grid of λo and θr values that
are 20× larger or smaller than those estimated automatically. Center : deconvolution result
using the automatically estimated hyperparameters.
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ing data for two astronomical targets, Io and Titan.

8.1.1 Io

Io is the innermost Galilean satellite of Jupiter with a diameter similar to Earth’s

moon (∼3600 km) and is known to be volcanically active. To understand the origin of Io’s

volcanism, its time evolution, and relationship to tidal heating, the volcanic activity of Io

needs to be monitored over a large time baseline. With the demise of the Galileo spacecraft,

which was in orbit around the Jovian system from 1995-2003, the monitoring of Io volcanism

now lies in the hands of ground-based observers.

When Io is closest to earth, its angular size is ∼1.2 arcsec, which is very close to the

natural angular resolution ("seeing") provided by ground-based telescopes. Because of its

brightness (apparent visual magnitude, mv∼5), Io is ideally suited for observation by AO

systems. Volcanism on Io has been monitored regularly in the near infrared (NIR) between

1 and 5 µm by one of us (F. Marchis) using the Keck-10 m telescope AO system.165–167 The

angular resolution provided by AO varies with the wavelength range of observations from

55 milli-arcsec (mas) in the Kc band (centered at 2.2 µm) to 100 mas in the Ms band (4.7

µm), corresponding respectively to ∼170 km and ∼305 km on the surface of the satellite.

Such spatial resolution is comparable to those of the Galileo observations of Io in the same

wavelength range.57

Marchis and co-workers166,167 used MISTRAL to process the first high-resolution

AO images of Io volcanic activity. Franck Marchis (UC Berkeley) and I compared the

performance of AIDA (with automatic hyperparameter estimation) to that of MISTRAL

with a set of Io images acquired in 2003. The deconvolution results for three different
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broadband filter observations are shown in Figure 8.3. Each basic-processed filtered image

was a shift-and-added synthesis of five observations (< 5 min each; background subtracted

and flat-fielded). The improvement in image constrast after deconvolution is obvious. In

the Kc band, the surface reflectance or “albedo” markings including dark paterae and bright

frost areas are visible on the surface of Io. The general features of Io are in excellent

agreement with those of Galileo/Voyager maps shown in Figure 8.4. AIDA and MISTRAL

deconvolution results are extremely similar, with a correlation coefficient of 99.4% when

calculated over the area of the satellite.

For a single 512×512 image, our AIDA implementation was 15−20 times faster than

the original MISTRAL method (e.g., ∼25 min vs. ∼7 hr on a 1.8 GHz iMac G5 computer

running Mac OS X 10.3). In practice, multiple MISTRAL deconvolutions must typically be

performed to hone in on hyperparameter values that yield the “best” results. This is often a

time-consuming and laborious process: between 10 to 20 MISTRAL deconvolution runs are

usually necessary to locate an optimal (θr, λo) pair. Thus, the practical gain in processing

time of AIDA compared with MISTRAL is &200.

The image of Io in the Ms band is radically different than for the Kc band, being

dominated by the localized thermal emission of the volcanoes. In the Lp band (intermediate

wavelength, ∼ 3.8 µm), large scale albedo features on the surface are visible as are the

thermal emissions of the active centers. After deconvolution several additional hot spots

were revealed on the hemisphere of Io. Most of them can be found in the basic-processed

image upon more careful scrutiny.

The accurate recovery of image intensities from which the temperature and emission
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Figure 8.3: Myopic deconvolution results for AO-corrected images of Io, a vol-
canically active moon of Jupiter. The PSF of the system was estimated using images
of a star located near the target with the same visible magnitude. PSF variability (charac-
terized by v in Eq. (6.13)) depends mainly on the brightness of the target, the quality of
the atmospheric turbulence, and the wavelength range of observations. We estimated that
FWHM variability of the PSFs from 10 nights of observation to be <6% in the K band.167
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Figure 8.4: Reconstructed appearance of Io on January 26, 2003 at 7:38 UT
observed from Earth. This image is based on Galileo/SSI and Voyager composite maps
at a resolution of 20 km (courtesy of P. Descamps, Institute de Mécanique Céleste et des
Calculs d’Éphémérides). Note that albedo features (e.g., calderas/craters) can also be seen
on the deconvolve imaged (cf. Figure 8.3).

areas of these hot spots can be determined (e.g., assuming a black body emission law) are

also of interest. Hot spot flux was measured using aperture photometry on the deconvolved

image assuming that most of the flux is gathered in an area slightly larger than the angular

resolution on the image.164 This is a good approximation for hot spots with a peak contrast

lower than 20%, since the intensity of the first Airy ring is negligible compared to the

variation of brightness on the surface. For the extremely bright hot spot (“outburst”) on

the Ms band image, a prominent Airy ring remains after deconvolution. This residual

artifact may be explained by the fact that the Keck PSF is hexagonal in shape163 and

that its orientation changes with the position of the telescope; optimizing the rotation of

the sampled PSFs would likely minimize this artifact. Since this problem will not have a

significant impact on the scientific analysis of the image, we have not pursued this matter

further. The hot spot can be seen on the basic-processed image with a very good SNR, and
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therefore its integrated intensity can be easily measured after comparison with the PSF.

Overall, the deconvolution of Io images with AIDA provides excellent reconstructions which

can be used to analyze surface changes on Io and to detect the faintest active centers and

quantify their intensities.

8.1.2 Titan

Titan, Saturn’s largest moon, was largely a mystery until very recently. Observations

collected by the Voyager spacecraft in 1981238 showed that Titan is obscured by a dense

and opaque atmosphere consisting mainly of nitrogen. The surface of this 0.9" angular

sized satellite, however, can be probed in the NIR through methane “windows” using such

high resolution techniques as speckle imaging83 and adaptive optics (AO).44 Recent AO

observations of its atmosphere revealed the presence of clouds and a complex structure with

seasonal variability. The NASA-ESA Cassini-Huygens probe in orbit within the Saturnian

system and an intensive campaign of observations using AO systems available on the Keck-

10m telescope (Mauna Kea, Hawaii) and the ESO-8m Very Large Telescope (Cerro Paranal,

Chile) are in place to help understand this complex satellite.

In Figure 8.5A, I show a ground based observation of Titan taken on January 15,

2005, one day after the Huygens probe landed on its surface. Titan was observed with the

Keck AO using the NIRC-2 camera with a pixel scale of 9.94 mas through a narrow band He

filter (2.06±0.03 µm). At this wavelength, the atmosphere is nearly transparent and most

of the structures visible on the image are larger than 330 km (corresponding to 55 mas). A

remarkable gain in image contrast is obtained after AIDA deconvolution, as shown in Figure

8.5B. This imaged hemisphere contains the landing site of the Huygens probe and was
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Figure 8.5: Myopic deconvolution results for AO-corrected images of Titan, the
largest moon of Saturn. (A) Basic processed image of Titan taken on January 14, 2005 (1
day after the Cassini-Huygens probe landing) using the ground-based Keck AO system and
a narrow band filter centered at 2.06 µm to probe surface albedo features.50 (B) Keck AO
image of Titan after myopic deconvolution with AIDA. (C) Mosaic image of Titan based on
1.3 km resolution data taken in the infrared with the Image Science Subsystem (ISS) instru-
ment aboard the Cassini spacecraft (http://photojournal.jpl.nasa.gov/catalog/PIA06185).
(D) False-color visible and infrared mosaic image of Titan taken by the ISS
(http://photojournal.jpl.nasa.gov/catalog/PIA07965). Atmospheric features are shown in
red and surface features in green and blue. Although the orientation of the Keck and ISS
observations are slightly different, similar structures are seen on the deconvolved image as in
the ISS image, validating the effectiveness of AIDA. Two ISS images were chosen to illustrate
the variability of the satellite appearance due to the presence of haze and clouds. Arrows
serve as reference markers to a common feature.
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regularly observed by the Cassini spacecraft (Figs. 8.5C and D). The similarity between

the Imaging Science Subsystem image (with a slight rotation of Titan) is striking. The

smallest albedo structures detected after deconvolution have clear equivalents in the higher

resolution image50 (see arrow markings). This comparison validates the efficiency of our

algorithm and demonstrates the absence of significant artifacts on the deconvolved image.

A full scientific analysis of this and numerous other Titan observations and deconvolution

results is presented elsewhere.50

8.2 Application to Multi-Frame Datasets

When multiple AO images of a common object are acquired, they are often simply

combined into a single shift-and-added image which is then deconvolved. This practice has

been demonstrated by others to be a sub-optimal; a more effective approach data-reduction

strategy would be to deconvolve the set of images in a global fashion, linking common vari-

ables while maintaining the distinctiveness of each observation. Extending the MISTRAL

approach to simultaneously deconvolve multiple image frames is a key feature of AIDA.

Below, I present deconvolution results for 3 different multi-frame datasets. The first two

datasets, one of synthetic AO retinal images and the other of real AO images of Uranus’

atmosphere, are used to demonstrate AIDA’s “multi-PSF” deconvolution capabilities, in

which there is a common object but a variable PSF. The third dataset of time-lapsed fluo-

rescence microscopy images of yeast microtubule dynamics is used to demonstrate AIDA’s

“multi-object” mode, in which there is a common PSF but different objects between frames.
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Figure 8.6: Mono-frame and multi-frame deconvolution of simulated retinal im-
ages. (A) An artificial 256×256 pixel retina object was created mimicking the characteristics
of the data presented in Roorda et al.217 (see text). (B) A representative degraded image (1
of 6) obtained by convolving with a Gaussian PSF (randomly generated with FWHMavg=5
pixels and a FWHM variance of 20%) and adding Poisson and Gaussian noise. (C) Mono-
frame deconvolution of the shift-and-added combination of 6 image frames. Contrast on the
cones is improved by a factor of ∼ 3. D : multi-PSF image deconvolution yields the best
photometric results (see 8.1).

8.2.1 Synthetic Retinal Images (Multi-PSF)

Fine retinal features, such as individual photoreceptors, can be observed through the

intact optics of a human eye using adaptive optics technology.154 The correction provided

by these systems is not perfect, and their PSFs display the same characteristics as those

obtained with astronomical instruments (a coherent peak surrounding by an halo which blurs

the image). The effect of blurring could be removed by deconvolution to sharpen the image

and restore its photometry. To test the ability of AIDA on deconvolving such data, Franck

Marchis and I generated a synthetic human retina image mimicking the characteristics of

the data presented in Roorda et al.217

This synthetic 256 × 256 pixel image (Figure 8.6A) contains 576 ellipsoidal cones

(aspect ratio = 0.8 ± 2) with an average radius of 5.6 ± 1 pixels and a mean centroid

separation of 12 ± 2 pixels. Two types of uniform brightness cones were included in the
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image. 90% of them were “dim” cones with photometric intensities of ∼ 22 ± 2 analog-to-

digital units (ADU), roughly twice the background; 10% of the remaining cells were “bright”

cones with an intensities of ∼ 35± 5 ADU. To the synthetic image, we added a background

with 10% flux variation from the center to the edge of the image and shadows of blood

vessels.

The positions, shape, and intensity of each cell were generated using a Monte-Carlo

method with a > 4 pixel separation between each cell boundary. This simulated object

frame was convolved with one of 6 Gaussian PSFs with a FWHM generated randomly from

a distribution with mean FWHM of 5 pixels and variance of 20%. A second simulation with

an average FWHM of 6 pixels and a variance of 25% was also considered. We exaggerated

the instability of AO system in this simulation since for most AO retinal systems the PSF

and stability are poorly characterized. Poisson and Gaussian noise were subsequently added

to generate the noisy observed image, i(r), with a SNR of ∼ 25. After convolution and the

addition of noise, cone contrast (see Eq. 8.2) was decreased by a factor of ∼ 6 (Figure 8.6B).

We used AIDA in multi-PSF mode to deconvolve these images. A sampling of PSFs

with the same characteristics as those used to generated the images were used to compute

the average OTF and OTF variance, v. To estimate the gain in quality of the multi-frame

deconvolution, we also deconvolved a shift-and-added mono-frame image synthesized from

all 6 image frames. Figs. 8.6C and D show the result of these deconvolutions. In both

cases, the sharpness of the image was restored and the contrast was improved by a factor

of 3-4 compared to the raw image. The mono-frame result was more pixelated, however,

and the photometric restoration was not as good compared to the multi-frame result. 8.1
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Simulation % intensity of true object, o
i ômono ôM_PSF

FWHMavg = 5 85± 5 105± 6 98± 6

FWHMavg = 6 82± 5 117 ± 77 90± 5

Table 8.1: Photometric accuracy of cone intensities after mono- and multi-frame
deconvolution.

summarizes the photometric accuracy for the deconvolution results and demonstrates the

superiority of multi-frame deconvolution over the mono-frame deconvolution of shift-and-

added data, notably for the case with less precise PSFs (FWHMavg= 6).

8.2.2 Atmosphere of Uranus (Multi-PSF)

Since the Voyager spacecraft encounter of the planet Uranus in 1986, interest in this

planet has been revitalized with the discovery of that its atmosphere is considerably ac-

tive.240 High angular resolution imaging, however, is necessary to detect cloud motions,94

faint rings, and small satellite systems.51,54 The extended disk (diameter ∼ 3.6) of the

planet (integrated apparent visual magnitude, mv ∼ 6) is bright enough to be used as a

reference for wavefront sensor analysis on most AO systems. However, since the position

of the centroid on the wavefront is not well-determined in the case of a quad-cell aperture

for such an extended object, the atmospheric correction is degraded in the final image and

artifacts may appear in several frames.51 Franck Marchis and I tested AIDA on observations

of Uranus taken on October 3, 2003 with the Keck AO system and its NIRC-2 camera using

a broadband filter centered at 1.6 µm (H band). Five 30 s frames recorded in less than 8 min

were processed using standard near-infrared data reduction techniques (flat-field, sky sub-

straction and bad pixel removal). To estimate the PSF for myopic deconvolution, we imaged
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Puck, a bright satellite of Uranus located 2.4" away from the center of the planet and whose

motion was negligible during the exposure time. Given the large imaged size of Uranus and

size of the image frames (1024× 1024 pixels), using MISTRAL for deconvolution would not

have been practical due to the long processing time needed (∼ 23 h/deconvolution on a Sun

Ultra 10 computer), especially since we would have needed to run multiple deconvolutions

to determine a good choice for regularization parameters. Deconvolution using AIDA with

automatic hyperparameter estimation was significantly faster (45 min for mono-frame de-

convolution and 1.5 h for multi-PSF deconvolution on a 2.8 GHz Intel Xeon Linux machine)

with the possibility of analyzing all AO data frames simultaneously.

Deconvolution results in significant image sharpening (Figure 8.7), with a gain in

contrast of ∼ 2 − 3 on the cloud features. A layered structure of the northern haze and

some faint clouds at ∼ 40◦ latitude are revealed and the structure of the large clouds

on the southern hemisphere are clearer after deconvolution. A “ghost” outer ring artifact

present in previous observations using the same Keck AO system,51 is visible in several

of the individual AO-corrected image frames (Figure 8.8A). This artifact remains in the

mono-frame deconvolution of the shift-and-added combined image but is half as intense in

the multi-frame deconvolution result (cf. Figs. 8.8B and C). The glare of Uranus (e.g., see

area near the innermost ringlet) is also further reduced in the multi-frame deconvolution

result than in the mono-frame deconvolution result. Overall, we find that simultaneous

deconvolution of multiple frame data is better able to restore low SNR features and minimize

artifacts than the deconvolution of a single shift-and-added representation of the multiple

frame data.
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Figure 8.7: Uranus observed with the Keck AO system and NIRC-2 camera on
October 3, 2003. (A) Multi-PSF deconvolution of 5 AO-corrected images of Uranus. (B)
Combined “shift-and-added” image of 5 AO-corrected observations (30 s exposure for each).
The gain in contrast after deconvolution is estimated to be ∼ 2, so that cloud features
(arrows) can be more easily identified.

Figure 8.8: Close-up of the ringlets of Uranus. (A) Basic processed AO image. (B)
Multi-PSF deconvolution using 6 image frames. (C) Mono-frame deconvolution of a shift-
and-added image. This ring system is extremely faint and close to the disk of the planet;
intensities of the ringlets are comparable to the intensity of the glare of Uranus as shown in
the basic processed image (A). Deconvolution using AIDA significantly improves the contrast
even on these faint features. The result is slightly better using multi-frame vs. mono-frame
deconvolution. Arrows indicate a ghost artifact present in the mono-frame deconvolution
result which is reduced in the multi-frame deconvolution result.
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8.2.3 Yeast Microtubule Dynamics (Multi-Object)

Microtubules are hollow cylindrical polymers which radiate from near the nucleus

of a cell and serve as “tracks” upon which cellular components are transported. Roughly

25 nm in diameter, these microtubules are formed from the stochastic polymerization and

depolymerization of α- and β-tubulin proteins. The regulation of microtubule dynamics

has been a topic of investigation for many years in cell biology, aided greatly by the direct

observation of microtubules using time-lapsed video fluorescence microscopy.

I used AIDA in multi-object deconvolution mode to process time-series images of

microtubule dynamics in the fission yeast, Schizosaccharomyces pombe. Using the OMX

wide-field fluorescence microscope system developed recently in our lab at UCSF, a yeast

cell whose microtubules were fluorescently labeled using the Green Fluorescence Protein

fused to α-tubulin was imaged every second. Each image was formed by physically sweeping

the microscope focus (by linearly moving the sample stage) through the entire z -depth of

the cell (∼ 4 µm in 50 ms) every second. Using estimates of the PSF based on a set of 3

images of a 100 µm fluorescent bead acquired under similar conditions, this time-series data

was myopically deconvolved assuming a common (time-invariant) PSF for the whole dataset

and assuming each image was simply a snapshot of a distinct “object.”

In Figure 8.9A, I show the results of standard myopic deconvolution and multi-object

deconvolution with automatic hyperparameter estimates for a single representative time

slice. In Figure 8.9B, the corresponding “kymograph” plots − 1D maximum intensity pro-

jections of each image as a function of time − are shown for this data. The mono-frame

deconvolution results are significantly denoised with improved microtubule contrast. The
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Figure 8.9: Multi-object deconvolution of time-series images of a S. pombe (fission
yeast) cell expressing α-tubulin-GFP. Images were acquired using the OMX microscope
system (data courtesy of Satoru Uzawa, Sedat Lab, UCSF). Each time-series slice was
generated by axially sweeping the microscope focus over a 4 µm depth within 50 ms; an
image slice was acquired every second for about 4 mins. (A) A single time-series slice of
the original image data after basic processing (bad pixel removal and flat-fielding), mono-
frame deconvolution, and multi-object deconvolution (image pixel size = 80 nm). (B) 2D
maximum intensity projections (generated along the y-axis of the slice) plotted as a function
of time (kymograph).
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multi-object deconvolution results have even better contrast enhancement, exhibiting thin-

ner microtubule fibers and a more textured “background” within the cell cytoplasm. It is

unclear how much of this texturing may be artifactual. However, given that each image

slice was deconvolved independently with respect to the time axis and that a number of cell

background features are temporally persistent in the kymograph suggests that some of these

grainy features are genuine.

8.3 Application to Three-Dimensional Datasets

One main advance of AIDA is the extention of the MISTRAL method to decon-

volved three-dimensional data commonly encountered in biological imaging. Unlike the

two-dimensional PSFs encountered in low numerical aperture astronomical imaging, the

PSFs in optical microscopy are more diffuse, with significant axial blurring (z -dimension)

on the order of 3 times the lateral blur. Deconvolution is expected to dramatically sharpen

image data subject to such “out-of-focus” blur. Here, I show myopic deconvolution results

for two three-dimensional (3D) datasets, one synthesized from magnetic resonance imag-

ing (MRI) data of a frog and another of real, wide-field fluorescence microscopy data of

chromosomes within cells undergoing cell division.

8.3.1 3D Frog MRI

I constructed synthetic 3D frog images (128× 256× 256 pixels) by convolving a MRI

volume dataset from The Whole Frog Project (Lawrence Berkeley National Laboratory)127

with a PSF derived from microscopic imaging of a sub-resolution (100 nm) fluorescent bead;



181

Poisson and Gaussian noise was added to the convolved image as described earlier. The PSF

used had a FWHM in the lateral direction of ∼ 3 pixels and an effective resolution-loss in

the z -direction (ζ) of ∼ 3 (see Eq. 7.5). Using an ensemble of similarly acquired experimen-

tal PSFs, these frog images were myopically deconvolved using automatic hyperparameter

estimates (∼ 6 hrs on a 2.8 GHz Intel Xeon Linux machine).

Additive 2D volume projections for the raw and deconvolved 3D image stacks for

image SNRs of 0 and 20 dB are shown in Figs. 8.10A (en face) and B (side-view). The

denoising and object reconstructions for this data are striking. The quality of the decon-

volution results conveyed by these 2D projections are comparable to those seen from a

comparison of individual 2D slices. Representative slices through the 3D volume stack of

the original object, 20 dB SNR image, and deconvolution result are shown in Figure 8.11;

also shown are intensity line profiles (denoted by an asterick) through the eye region of the

2D frog slices. Deconvolution with AIDA leads to subtantial photometric restoration of the

original frog data, with a signal-to-noise improvement (∆SNR) of 5.7 and 5.1 dB for image

SNRs of 0 and 20 dB, respectively.

8.3.2 Mitotic Chromosomes in Drosophila Embryos

Nearly 50 years since the atomic structure of DNA was elucidated, the higher-order

structural organization of DNA within chromosomes of cells remains poorly understood.

With recent advances in high-resolution microscopic imaging and fluorescent labeling tech-

nology, however, discerning the mesoscopic arrangements of DNA within living cells is be-

coming more of a reality. A primary interest of our lab is to better understand the detailed

structural changes of chromosomes as a cell divides in a process called mitosis. During mi-
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Figure 8.10: 2D volume projections for myopically deconvolved 3D frog image
stacks with images SNRs of 1 and 100. (A) xy-projection. (B) yz -projection. Auto-
matic hyperparameter estimates were used along with an axial resolution gradient factor of
ζ = 3 (see Sec. 7.3).
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Figure 8.11: Representative 2D slices and line profiles through the original 3D
frog object (o), 20 dB SNR image (i), and deconvolution result (ô).

tosis, a cell’s chromosomes are unraveled, condensed, and separated; defects in chromosome

structure during any of these mechanical steps could have devastating consequences on the

fidelity of genetic transmission to daughter cells.

Drosophila melanogaster (fruit fly) embryos offer a unique opportunity to study chro-

mosome structural changes during mitosis. Cells in early embryos (within 2-3 hrs) undergo

multiple rounds of cell division in a synchronized and highly reproducible manner. Using the

OMX microscope system mentioned earlier (Sec. 8.2.3), a 3D image stack (32 × 512 × 512

pixels) was acquired of a “cell cycle 10” D. melanogaster embryo fixed in 10% formaldehyde

and mounted in glycerol. Cells in this embryo were stained with the a DNA-specific dye

DAPI and captured undergoing anaphase, the stage of mitosis in which chromosomes sepa-

rate. This image stack was deconvolved myopically using a PSF derived from an image of a
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170 µm fluorescent bead under similar imaging settings. Image pixel spacing was 80 nm in

xy and 150 nm in z, for a total image stack thickness of 4.8 µm. ζ was set to 3.2 based on

the extent of the OTF in the lateral vs. axial directions.

Shown in Figure 8.12 are 2D maximum intensity projections of representative portions

of the original 3D image stack and the result after myopic deconvolution. Although the

original data shown is of especially good quality so that most chromosome arms can be

distinguished in Figure 8.12A, chromosome boundaries are significantly more demarcated in

the deconvolution result. The benefits of deconvolution are even more pronounced in Figure

8.12B in which there is greater blurring in the axial direction vs. lateral directions: finer

structures and corrogated banding patterns of the chromosome arms become noticeable.

Some residual “hour-glass” PSF blur remains after deconvolution, however, and appears to

become more prominent with increasing z -depth (see e.g., lower left of deconvolution result,

Figure 8.12B). This blur may be attributed to greater index of refraction abberations between

the microscope objective lens and the sample as one focuses deeper into the embryo. The

true PSF in this case is thus likely to be depth-dependent, although space-invariant PSFs

are assumed in the current AIDA deconvolution framework.

To achieve the non-blurry, visually balanced deconvolution result of Figure 8.12, I

found it necessary to scale the automatic hyperparameter estimate, λ̂o, down by a factor

of 10. Inaccurate hyperparameter estimation is likely due to at least one of three possible

causes. First, as alluded to above, depth-dependent variations of the true PSF are not

accounted for in our imaging model and may lead to compromised object reconstructions.

Second, there may be noise sources (e.g., out-of-focus, scattered background light) that
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Figure 8.12: Chromosomes of mitotically dividing cells (cell cycle 10, anaphase)
within a D. melanogaster (fruit fly) embryo. Chromosomes were stained with the
fluorescent dye, DAPI, and embryos fixed in 10% formaldehyde fixation buffer, mounted in
glycerol, and imaged using the OMX microscope system with a 100X oil-immersion objective
(data courtesy of Yuri Strukov, Sedat Lab, UCSF). (A) Maximum intensity xy-projections of
2 subregions of an acquired 3D image stack after basic processing (removal of bad-pixels and
flat-fielding) and myopic deconvolution result using ζ = 3.2 and λo = λ̂o/10 (see text). Insets
(see arrows) highlight corresponding areas of improved contrast after AIDA deconvolution.
(B) xz -projections for the full data stack of (A). Areas of improved contrast are again
highlighted by arrows. More dramatic restoration is observed in the axial (z -) direction,
although some residual blurring remains, noticeably with increasing z. Image pixel size was
80 nm in the lateral (xy-) direction and 150 nm in the axial direction. Bar length = 4 µm
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are not accounted for by the assumed noise model; the effectiveness of the hyperparameter

estimation scheme is predicated upon good estimates for the Gaussian and Poisson noise

statistics (as discussed in Sec. 7.4). Third, out-of-focus contributions to the image stack

from areas of the embryo outside the image stack are not accounted for in the current

imaging framework. The effects of these factors on deconvolution outcome and strategies to

compensate for them are are currently being explored by our group.
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Chapter 9

Outlook

I have extended the MISTRAL approach177 to myopically deconvolve, for the first

time, multiple image frame data and three dimensional image stacks. Our adaptive image

deconvolution algorithm, AIDA, runs at least 15 times faster then the original MISTRAL

algorithm and is intended for open-source development. Endowed with a simple yet robust

scheme to estimate regularization hyperparameters, AIDA greatly simplifies the tedious and

delicate though practically necessary task of balancing maximum likelihood estimation with

object regularization/noise suppression. AIDA can generate high quality, edge-preserved,

photometrically-precise object reconstructions without the need to sample (typically 10-20)

different hyperparameter settings to identify an optimal set. This results in a practical

efficiency gain of AIDA over MISTRAL of at least ∼ 200-fold.

Multiple image observations are commonly acquired in adaptive optics imaging, al-

though they are often combined into a single averaged image before deconvolution. Decon-

volving these images simultaneously, however, is a far more effective data reduction strat-
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egy.39,40, 227, 245 The multiframe deconvolution results of this paper show that by leveraging

invariable aspects of the data while retaining the unique variations between distinct obser-

vations leads to object reconstructions with crisper details, higher photometric precision,

and fewer artifacts than the corresponding mono-frame deconvolution results.

AIDA’s multi-frame deconvolution capabilities are currently limited to data with a

single object and multiple variable PSFs (Mo = 1; Mh > 1) or a single PSF and multiple

variable objects (Mh = 1; Mo > 1). It would be straightforward to extend the algorithm to

handle datasets in which multiple objects are imaged using different though known transfor-

mations of a fundamental PSF describing the optical system. This is relevant, for example,

to multi-wavelength imaging in astronomy118 and microscopy in which the PSF charac-

teristics as a function of wavelength are well established and can be predicted. Such an

approach could also be applied to process tomographic imaging data in which the depen-

dence of the transfer function is known/parametrizable as a function of tilt angle. Using

such a multi-object:multi-linked-PSF approach, our group is currently exploring the appli-

cation of AIDA to deconvolve electron microscopy (EM) images, with the goal of improving

3D object reconstructions from EM tomographic data.

AIDA is equally effective in deconvolving 3D image data and 2D data, and deconvo-

lution times scale linearly with the size of the image data. In the current AIDA framework,

each image pixel element is treated as a variable to be optimized, leading to substantial

computational demands as image/volume size increases. Work in our group is in progress

to recast the optimization of the PSF in terms of Zernike polynomials and the more com-

putationally compact “pupil function” that characterizes the optical wavefront at the exit
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pupil of an imaging system arising from a point source.96,97 In addition to greater compu-

tational efficiency for larger image datasets, myopic deconvolution using the pupil function

and a Zernike expansion can provide explicit insight into the inherent or dynamic aberra-

tion modes of an optical system. The ease in which the pupil function can be modified to

account for aberrations makes it particularly amenable to use in cases where the PSF is

space-variant96,97 (e.g., with depth-dependent index of refraction variations in microscopy

or anisoplanatic imaging in astronomy). Moreover, use of the pupil function could help

bridge the synthesis of wavefront sensing data from adaptive optics and imaging data in the

deconvolution process.178

At least three issues merit futher development and exploration. First, the develop-

ment of a multi-object deconvolution mode more specifically taylored for time-series data.

In deconvolving the microtubule dynamics data in Sec. 8.2.3, the temporal independence of

each object in the time-series was assumed. While this was helpful in highlighting common,

persistent features between time frames, incorporating a cost function term or procedure

within the deconvolution algorithm to maximize the temporal correlation between adjacent

time slices may help reinforce object features that are self-similar and suppress temporally-

uncorrelated noise artifacts. Second, as image datasets become larger and/or deviations from

the assumed noise model become more pronounced, optimization convergence may become

seriously compromised. Convergence might be improved by switching from a weighted least-

squares (L2-norm) form for the data-fidelity term to a robust L1-norm form which is com-

putationally simpler and less sensitive to noise model mismatch and data outliers.67,111, 136

Deconvolution efficiency might also be improved by a reparametrization of the object, for
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example, using wavelets, and by incorporating aspects of multi-resolution/hierarchical scal-

ing into the deconvolution algorithm.71,204, 242, 258 Finally, it would be interesting see how

the edge-preserving and noise suppression advantages of AIDA deconvolution could improve

the processing of data from super-resolution imaging modalities such as multi-frame mosaic-

ing19,67 and structured illumination microscopy.91,92
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Appendix A

Diffusion of Green Fluorescent

Protein in the Aqueous-Phase Lumen

of Endoplasmic Reticulum

This chapter was published by Mark Dayel, Erik F. Y. Hom, and Alan S. Verkman under

the same title in the Biophysical Journal 76(5):2843-2851 (1999).
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