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Fluorescence correlation spectroscopy (FCS) is being applied increasingly to study diffusion and interactions
of fluorescently labeled macromolecules in complex biological systems. Fluctuations in detected fluorescence,
δF(t), are expressed as time-correlation functions,G(τ), and photon-count histograms,P(k;∆T). Here, we
developed a generalized simulation approach to computeG(τ) andP(k;∆T) for complex systems with arbitrary
geometry, photophysics, diffusion, and macromolecular interactions.G(τ) andP(k;∆T) were computed from
δF(t) generated by a Brownian dynamics simulation of single-molecule trajectories followed by a Monte
Carlo simulation of fluorophore excitation and detection statistics. Simulations were validated by comparing
analytical and simulatedG(τ) andP(k;∆T) for diffusion of noninteracting fluorophores in a three-dimensional
Gaussian excitation and detection volume. Inclusion of photobleaching and triplet-state relaxation produced
significant changes inG(τ) andP(k;∆T). Simulations of macromolecular interactions and complex diffusion
were done, including transient fluorophore binding to an immobile matrix, cross-correlation analysis of
interacting fluorophores, and anomalous sub- and superdiffusion. The computational method developed here
is generally applicable for simulating FCS measurements on systems complicated by fluorophore interactions
or molecular crowding, and experimental protocols for whichG(τ) and P(k;∆T) cannot be computed
analytically.

Introduction

Fluorescence correlation spectroscopy (FCS) is being applied
increasingly to study diffusive phenomena and macromolecular
interactions in complex systems, including aqueous and mem-
branous compartments in living cells.1-3 Typically, fluorescence
intensity in a detection volume,F(t), is monitored over time.
Fluctuations inF(t) are produced by kinetic processes that alter
the number and/or intrinsic fluorescence of molecules in the
detection volume. The fluorescence time course thus contains
information about molecular diffusion and/or photophysical and
chemical dynamics. The FCS approach has been used most
widely to measure fluorophore diffusion coefficients and
concentrations,4,5 though many other biologically relevant
phenomena are in principle measurable, including fluorophore
rotation,6,7 surface adsorption dynamics,8 and fluorophore bind-
ing interactions.9,10

Although all information in an FCS measurement is contained
in F(t), derived functions are computed to extract useful
information fromF(t). The commonly used derived functions
are the time-correlation functionG(τ)5,11 and the photon-count
histogram,P(k;∆T),12,13 where k represents the number of
photons in a time interval∆T. G(τ) characterizes the temporal
memory of the fluorescence signal, whileP(k;∆T) characterizes
the static distribution of fluorescence intensities over a specified
time interval. Analytical expressions forG(τ) have been obtained
for a few simple situations involving simple Brownian diffusion

of fluorophores with a Gaussian detection volume with and
without triplet-state photophysics14 and fluorophore binding to
a relatively immobile substrate.15 Deviations from these analyti-
calG(τ) cases have been noted or are anticipated for anomalous
diffusion,16,17 confined diffusion,18 non-Gaussian detection
volumes,19,20 large diffusing particles compared to detection
volume,21 photobleaching,22-24 and Förster resonance energy
transfer.10.25 Expressions forP(k;∆T) have been obtained for
Brownian fluorophore diffusion.12,26 The influence of triplet-
state photophysics and other nonideal conditions mentioned
above onP(k;∆T) has not been investigated.

Measurements in cellular systems are complicated by geo-
metric and phase heterogeneities that produce confined diffusion
within organelles and/or macromolecular crowding. Molecular
crowding by fixed and mobile obstacles can dramatically alter
particle diffusion and interactions through excluded volume
effects and spatial organization.27,28We have used photobleach-
ing methods extensively to characterize the diffusion of
macromolecules in cellular compartments29 and have developed
analytical and computational methods to deal with complex
diffusive behavior30 and organelle geometry.31,32 In principle,
FCS measurements can contain greater information content
about diffusive and reaction dynamics than fluorescence recov-
ery after photobleaching, in part because single-molecule events
are recorded over many orders of magnitude of time.

In this study we establish a general approach to simulate FCS
data for complex systems. The motivation for this work was
the need to extract quantitative information on diffusion and
binding from FCS measurements in complex systems. The
computational method involves a Brownian dynamics simulation
of particle trajectories followed by a Monte Carlo simulation
of fluorescence statistics. TheG(τ) and P(k;∆T) derived
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functions are computed from the simulatedF(t). The simulation
approach was validated and applied to examine the effects of
photophysical phenomena and intermolecular interactions on
G(τ) andP(k;∆T).

Experimental Section

Overview. The simulation of an FCS measurement was
conducted in three stages: (a) generation of molecular trajec-
tories, (b) generation of detected fluorescence time course,F(t),
on the basis of the molecular trajectories, and (c) computation
of G(τ) andP(k;∆T) from F(t) (Figures 1A and 1B). Computa-
tions for each stage were handled independently of the other
stages. Molecular trajectories were generated by Brownian
dynamics simulations using the GROMACS molecular dynam-
ics package.33 The trajectories were filtered through a fluores-
cence statistics module to generateF(t), which was stored
efficiently as a list of photon arrival times.F(t) was processed
to generateG(τ) andP(k;∆T) using an algorithm based on the
photon arrival times. As discussed below, the simulations
utilized different time scale intervals: dt, for the Brownian
dynamics time step;δt, for the time interval over which
fluorescence is calculated from the molecular trajectories to
generateF(t); and∆t, for the minimum bin time used for the
generation ofG(τ). In general, dt e δt e ∆t, whereδt and∆t
are integer multiples of dt.

Brownian Dynamics Simulations.A system of molecules
evolving by Brownian dynamics in an isotropic highly damping
hydrodynamic fluid is described by the modified Langevin
equation: dr i/dt ) Fi/γi + δi, where r i is the position of
molecule i, Fi is the force acting on the molecule,γi is the
friction coefficient of the molecule in the hydrodynamic fluid,
and δi is a randomly varying force.34 This equation was
integrated using the GROMACS package, version 3.1.2,33 to

obtain dr i ) (Fi/γi)dt + x2kBT(dt)/γi δ0, wherekB is Boltz-
mann’s constant,T is absolute temperature, dt is the simulation
time step, andδ0 is a Gaussian-distributed random number with
average zero and standard deviation 1. The uniform random
number generator in GROMACS, version 3.1.2, was replaced
by the program ran2 of Press et al.35 (with a random number
generation period of∼1018), and the Gaussian transformation
was replaced by the program gasdev of Press et al.36 The
GROMACS-parametrized friction coefficient,γ, was calibrated
by simulating a system of identical spherical particles of known
mass and radiusa and comparing the diffusion coefficient from
the simulation,Dsim ) 〈r2〉/6t, with the diffusion coefficient
calculated from the Stokes-Einstein equation,DSE ) kBT/6πηa.
The friction coefficient varied with the mass of the particle.

Intermolecular forces between the atomsi and j, Fij, were
estimated by Lennard-Jones potentials,Fij(rij) ) Aij/rij

12 -
Cij/rij

6, whererij is the distance between atomsi and j andAij

andCij are particle-specific coefficients governing the strength
of the interaction. Electrostatic interactions were ignored. For
most simulations reported here,Cij ) 0, yielding a collection
of Lennard-Jones repulsive spheres. For crowding simulations,
the short-range repulsion was made softer by adding terms with
Cij < 0. For specifiedAii and Cii, the effective length of the
potential (and thus the effective radius of the particle) was
operationally defined as the distance at which the potential
reachedkT. To simulate binding of a fluorophore to a large
immobile object, the spatial coordinates of the fluorophore were
frozen for a specified length of time. Whether binding occurs
and the length of time remaining bound were specified in a
Monte Carlo fashion with constant probability characterized by
two time constants,τon andτoff. These time constants correspond
to the reciprocal pseudo-first-order forward and reverse rate
constants for binding, respectively.

In a typical simulation, the trajectory of 1000 molecules,
whose initial positions were chosen at random, was computed
in a 10× 10 × 10 µm3 box with periodic boundary conditions
and no pressure coupling (equivalent concentration 1.7 nM).
We found that trajectories run for times greater than 200 times
the characteristic diffusion time gave results independent of run
time. All simulations were run at 300°K. The system was
typically equilibrated by a run of 3 s, followed by a production
run of 1 s. The time step dt was set to 1-200 ns. The time step
was chosen to give a potential energy that did not vary abruptly
upon close intermolecular approach. The GROMACS software
was compiled and run on a Pentium 4 computer running Linux
emulation software on Windows XP. Dynamics for low particle
concentrations were generated at a rate of∼2 × 106 steps/h for
a 2.8 MHz Pentium 4. Simulations at high particle concentra-
tions were run on the Xeon cluster at the National Center for
Supercomputer Applications at the University of Illinois,
Urbana-Champaign.

Fluorescence Statistics.F(t) was calculated from the Brown-
ian dynamics trajectories according to

Figure 1. Simulation method. (A) Simulations were done in three
steps: computation of Brownian dynamics trajectories using GRO-
MACS software; computation of fluorescence time courses using
custom software; and computation of correlation functions and photon-
count histograms from photon arrival times. (B) Brownian dynamics
trajectories were generated to give coordinates of a collection of
molecules in a periodic box. The number of molecules within a
subvolume of the box at each time,NV, was computed. A fraction of
these molecules,Nex, were excited, and a fraction of the excited
molecules emitted photons, generating a fluorescence time course,F(t).
(C) Photon arrival time format. Given a user-defined time bin,∆t,
fluorescence photon counts are stored as a data pair: the first element
is the number of empty bins,b, separating bins containing photons,
and the second element is the number of photons,k, within the latter
bin. Shown in the figure is the entry 3,1. The dashed lines demonstrate
thatb ) 3, and the single photon at the end of the dashed lines indicates
k ) 1, forming the entry 3,1.
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where N is the number of molecules,pex(r ′i,ω′i;t′) is the
probability that moleculei at positionr ′i with orientationω′i is
excited at timet′, pph(r i,ωi;t|r ′i,ω′i;t′) is the conditional prob-
ability that a molecule excited at timet′ undergoes a photo-
physical conversion by a later timet, pem(r i,ωi;t) is the
probability that a molecule subsequently emits a photon, and
Qdet(ωi) is the quantum yield of detecting emitted photons from
a molecule in orientationωi (assuming negligible time to
detection). The quantum yield of photon detection was assumed
to be independent of the polarization of emitted photons and
thus molecular orientation:Qdet(ωi) ≈ Qdet. The bracketed
integral in eq 1 is computed in units ofδt, the fundamental
fluorescence query interval. Each of the conditional probability
terms as used in the simulations is defined explicitly below.
Generation of the fluorescence trace,F(t), and calculations of
G(τ) and P(k;∆T) were implemented in Compaq Visual
FORTRAN 90 (source code and computational details available
upon request).

Molecular Excitation. The probability moleculei is excited
at a timet′ can be expressed as

wherepS0(i) is the probability (0 or 1) that moleculei is in the
ground state (S0) (available for excitation),ε(ω) is the orienta-
tion-dependent absorption probability per unit time, andIapp(r )
is the normalized apparent excitation profile. Here, we follow
the convention of Rigler et al.37 in using Iapp(r ) for the
convolution of the excitation intensity profile and the detection
efficiency profile.38,39 For the simulations presented here,
rotational correlation times were assumed to be much faster than
the Brownian dynamics time step, permitting replacement of
ε(ω) by an orientationally averagedεj. For a three-dimensional
Gaussian,Iapp(r ), the excitation probability of moleculei at
position r i ) (xi,yi,zi) is then

wherewxy is the standard deviation of the Gaussian profile in
the radial direction centered at (x0,y0,z0) andκ ) wz/wxy, where
wz is the standard deviation of the Gaussian profile in the axial
direction. For each fluorescence query interval,δt, eq 3 was
evaluated for each molecule and compared to a uniformly
distributed random number between 0 and 1 to determine
whether excitation occurred (see below for long-lived photo-
dynamics). Typically,εj was adjusted to yield 104-105 detection
events per second. For some computations, the functional form
of Iapp(r ) was adjusted to accommodate other excitation profiles.

Photophysical Conversions.Molecules in the excited state
were allowed to relax via fluorescence, intersystem crossing,
or photobleaching mechanisms as described below.

Fluorescence. The fluorescence lifetime of the excited state,
τF, was assumed to be much faster than the time step of the
Brownian dynamics simulation so that excitation and de-
excitation occurred during the same time step (τF , δt).
Fluorescence photons were emitted with a constant quantum
yield, QF, simulated by comparing a specifiedQF with a

uniformly distributed random number in the range 0-1

Since molecules are regenerated immediately after excitation-
emission,pS0(i) ) 1 for all i in eq 2.

Intersystem Crossing. Excited molecules were allowed to
cross over into a triplet state with a constant probability,QT.
Once in the triplet state, they were allowed to decay nonradia-
tively to the ground state with a constant probability defined
by a characteristic exponential time constant,τt > δt

Molecules in the triplet state were excitable again only after
relaxing to the ground state, while in the triplet statepS0(i) was
set to 0 in eq 2. Molecules in the triplet state that crossed a
periodic boundary of the simulation box were assumed to have
“escaped” and so were returned to the ground state.

Photobleaching. Excited molecules were forced to become
unexcitable permanently with constant probabilityQB

with pS0(i) ) 0. Photobleached molecules were regenerated
(pS0(i) set to 1) once they crossed the periodic boundary of the
simulation box to prevent continuous depletion and non-steady-
state effects.

Correlation Function and Histogram Computations.F(t),
calculated from eq 1, was stored as a paired list of times between
the consecutive photons and the number of photons (photon
arrival times (PATs)) (Figure 1C). To maximize computational
efficiency where the simulation time step was much smaller
than the characteristic time of photon arrival, a binned PAT
format was used in which the number of bins,b, between
consecutive bins with photons (binsi and i + b) was recorded
along with the number of photons counts,k, registered in bin
(i + b). For a list of PAT pairs, the time autocorrelation function
of fluorescence fluctuations was computed as

whereM is the length of the PAT list,K is the total number of
photons counted (∑j)1

M k(j)), andB is the total number of bins
between the first and the last detected photons (∑j)2

M b(j)).

For calculation of cross-correlation functions using paired
Fx(t) and Fy(t), an absolute PAT format (absPAT) was used
instead, in whichb(j) entries are replaced by theabsolutetime
in which photons arrive (in units of∆t): pabs(j) ) {babs(j),k(j)}.
For two absPAT records,px

abs(j) ) {bx
abs(j),kx(j)} andpy

abs(j) )
{by

abs(j),ky(j)}, the cross-correlation function was computed as

F(t) )

∑
i)1

N

[∫t′

t
pex(r ′i,ω′i;t′)pph(r i,ωi;t|r ′i,ω′i;t′)pem(r i,ωi;t)Qdet(ωi)δt′] (1)

pex(r ′i,ω′i;t′) ) pS0
(i)ε(ω′i)Iapp(r ′i) (2)

pex(r ′i,ω′i;t,′) )

pS0
(i)‚εj exp[-((xi - x0)

2 + (yi - y0)
2 + ((zi - z0)/κ)2

2wxy
2 )] (3)

pph(r i,ωi;t|r ′i,ω′i;t′) ) δ(t - t′)

pem(r i,ωi;t) ) QF (4)

pph(r i,ωi;t|r ′i,ω′i;t′) ) QT/τT

pem(r i,ωi;t) ) 0 (5)

pph(r i,ωi;t|r ′i,ω′i;t′) ) QB/τB

pem(r i,ωi;t) ) 0 (6)

G(τ ) b(j)∆τ) )

[((B - b(j))-1 ∑
i)1

M-1

∑
j)i+1

M

k(i)k(j-1))/(K/B)2] - 1 (7)
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whereBmin ) Min[Bx,By]. Equation 8 can be used to compute
simultaneously the forward (τ > 0) and reverse (τ < 0) cross-
correlation functions,Gxy(τ) andGyx(τ), respectively.

Computation of the correlation function using photon arrival
times as described above is more efficient than the conventional
direct approach using the fluorescence trace, scaling ap-
proximately asM2 (M is the number of PAT pairs) instead of
asB2 (B is the total number of simulation time bins). For a 2 s
simulation with a 200 ns time step, a photon-count rate of 100
kHz/molecule and an average of 1 molecule in the observation
volume,M e 2 × 105, whereasB ) 107. In this case, computing
the correlation function using the direct approach took 7 h on
a 2.8 MHz Pentium 4, whereas the PAT method took 30 min.

The calculation ofG(τ) as described by eqs 7 and 8 is similar
to that of Davis et al.40 that mimics the computation in hardware
correlator cards. In our method,G(τ) is computed at eachτ by
multiplication of PAT counts corresponding to that photon
arrival time, whereasG(τ) is computed by Davis et al. by
addition. In principle, the computation ofG(τ) by multiplication
becomes efficient for large photon-count rates where the number
of bins containing more than one count is significant; multiple
additions would then be necessary as opposed to a single
multiplication. In practice, we found a<1 s difference in
computation time between the two methods for a 1 ssimulation
with a 50-100 kHz count rate.

To mimic the temporal resolution and time-binning structure
of hardware correlators used in FCS experiments,G(τ) values
were averaged in a quasi-logarithmic manner.41,42Briefly, G(τ)
values within each of the first eight successive time blocks∆τ
were averaged for a total of eight initial averaged values ofG(τ);
here,∆τ ) 32 or 200 ns, corresponding to the resolution of
commercially available hardware cards. Each subsequent group
of eightG(τ) values was averaged using a width that was twice
that of the preceding group. For example, averagedG(τ) values
9-16 were obtained with width 2∆τ, G(τ) values 17-24 had
width 4∆τ, and so on. The averaging procedure was continued
until all simulatedG(τ) values were averaged.

Functions were fit to averaged and binnedG(τ) by nonlinear
least-squares regression. The fits were weighted by the standard
deviation ofG(τ), determined from multiple simulations done
with the same set of parameters but with different starting
configurations and random number seeds.43,44 Nonlinear least-
squares regression was conducted in Microsoft Excel45 or Igor
Pro 4 (WaveMetrics, Inc., Lake Oswego, OR). Identical values
of fitted parameters were obtained using Mathematica 4.0
(Wolfram Research, Champaign, IL).

The photon-count histogram (PCH),P(k;∆T), was computed
by rebinning the PAT using a specified time bin,∆T, followed
by tabulating the number of counts,k, in the rebinned PAT list.
PCH data were fitted by numerical integration of the equations
of Chen et al.12 using a Levenberg-Marquardt algorithm
implemented in Mathematica 4.0 (Wolfram Research, Inc.,
Champaign, IL). The two fitting parameters wereNh , the average
number of molecules in the excitation volume, andεj, the average
specific brightness, in counts (time bin)-1 molecule-1.

FCS Measurements.FCS measurements on 1-5 nM aque-
ous solutions of calcein (Molecular Probes, Inc., Eugene, OR)
were done on a home-built instrument46 in which the 488 nm

beam from a diode laser (Coherent, Inc., Santa Clara, CA) was
directed through a 100× oil objective lens using a Nikon TE-
300 inverted epifluorescence microscope. The excitation light
was focused on thin fluid layers sandwiched between cover
glasses. Emitted fluorescence passed through a 510 nm dichroic
mirror and a 525( 25 nm band-pass filter (Chroma Technolo-
gies, Corp., Rockingham, VT) and was focused onto a 100µm
diameter fiberoptic cable (Fico, Inc., Tyngsboro, MA). Photon
counts were detected using an avalanche photodiode (Perkin-
Elmer Optoelectronics, Ltd.) and correlated with an ALV-5000
correlator card (ALV-Laser Vertriebsgesellschaft mbH, Langen,
Germany).

Results

Validation: Brownian Diffusion. To validate our compu-
tational approach, FCS simulations of Brownian diffusion in a
Gaussian excitation volume were carried out where analytical
expressions exist forG(τ) andP(k;∆T). Figure 2A shows a linear
plot of mean-square displacement (MSD) versus time (r > 0.99),
confirming a lack of correlation in the 1010 random numbers
generated for the Brownian dynamics simulation. The diffusion
coefficient computed from the slope was 298µm2/s, in agree-
ment with 300µm2/s used in the simulation.

A 1 × 1 × 3 µm3 observation box was set up at the center
of the 10× 10 × 10 µm3 simulation box, and the number of
particles within the observation volume tracked throughout a 1
s simulation time. The average number of particles in the
observation volume was 3.02, as expected from the observation
volume of 3µm3 and the specified concentration of 1 particle/
µm3. The number of particles in the observation volume varied
from 0 to 13 during the simulation. Figure 2B shows representa-
tive fluctuations in the number of particles in the observation
volume over a representative 100µs time interval. Figure 2C
shows the number of fluorescence detection events (binned in
200 ns time intervals) during the same time after processing
through the fluorescence filtering module.

Figure 2D showsG(τ) computed fromF(t), together with a
fit of the analytical equation for Stokes-Einstein diffusion in a
volume defined by a Gaussian excitation beam profile37

where τD is the characteristic diffusion time through the
excitation volume andκ is the ratiowxy/wz. The simulated data
were fitted well, with aτD value of 405( 15 µs (standard
deviation) from an average of four separate 1 s simulations, in
agreement with 419µs calculated using the diffusion coefficient
derived from Figure 2A and the specified Gaussian illumination
width in thexy-plane (ωxy): τD ) (2wxy)2/4D. The fittedG(0)
was 0.169( 0.003, in agreement with 0.169 calculated from
the particle concentration,CN, and the specified Gaussian
illumination volume:G(0) ) (8π3/2CNκwxy

3)-1. Figure 2E shows
P(k;∆T) computed fromF(t), together with a fit to the theory
given by Chen et al.12 The simulatedP(k;∆T) was in excellent
agreement with the theory predicting a “super-Poissonian”
function but quite different from a single Poisson distribution
shown for comparison.

Additional computations were done to validate the model,
including demonstrating predicted effects onτD and G(0) of
changing particle concentrations and diffusion coefficients:τD

was not affected by concentration and was inversely proportional
to the friction coefficient, whileG(0) was not affected by the
friction coefficient and was inversely proportional to concentra-
tion (not shown). Simulations done with non-Gaussian excitation

Gcross(τ ) [bx(i) - by(j)]∆τ) )

(Bmin - [bx(i) - by(j)])
-1 ∑

i)1

Mx

∑
j)1

My

kx(i)ky(j)

(Kx/Bx)(Ky/By)
- 1 (8)

G(τ) ) G(0)(1 + τ/τD)-1(1 + τ/κ2τD)-1/2 (9)
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and emission profiles (spherical, cubic, and symmetric Gaussian)
at constant volume revealed small though significant changes
in theG(τ) curve shape (Figure 2F) that could be misinterpreted
as anomalous or other types of complex diffusion.

Effect of Intersystem Crossing onG(τ) and P(k;∆t). The
effect of triplet-state intersystem crossing onG(τ) was simulated
by allowing an excited molecule in state S1 to enter the triplet
state (T1) as a first-order kinetic process characterized by time
constantτis (Figure 3A). Decay from the triplet state to the
ground state was also simulated as a first-order kinetic process
characterized by triplet lifetimeτt. Molecules in the triplet state
were not subject to excitation, and decay from the triplet state
occurs without detectable photon emission.

Figure 3B showsG(τ) for simulations with intersystem
crossing as a function of excitation intensity at constantτis )
0.3 µs andτt ) 5 µs. Excitation intensities in Figure 3B are
expressed in terms of the specific brightness (detector counts
per molecule per second) obtained from simulations done in
the absence of triplet-state population. For this combination of
τis andτt, which are typical of values obtained experimentally,14

high specific brightness is required to appreciably populate the
triplet state.

For the case of isotropic diffusion in a hydrodynamic medium
in which the time scale of triplet-state kinetics is much faster

than that of diffusion kinetics (the conditions under which Figure
3B was simulated),G(τ) is given as14

whereTh is the steady-state fraction of molecules in the triplet
state andτjt is the characteristic time for triplet-state decay.Th
and τjT are spatial averages weighted by the square of the
fluorescence intensity across the excitation profile.14 Th was
calculated numerically by dividing the simulation cell into
subcells of 0.1µm3, tabulating the square of the fluorescence
intensity (i2) and the fraction of molecules in the triplet state
(T) for each subcell, and then summing the product over the
simulation box and over all time steps:Th ) ∑i2F/∑F, whereF
) T/(1 - T). τjT was calculated for each subcell by determining
the triplet-state lifetime (τt) of molecules entering the triplet
state in that subcell, then summing the product:Th ) (∑τTi2F/
c)/(∑i2F/c), wherec is the concentration of molecules in the
subcell. The time constantτt is related to the triplet lifetime,τt,
by 1/τt ) 1/τT - k12/τis(k12 + k21).

The smooth curves in Figure 3B (which track the simulations
very closely) are fits of eq 10 to simulatedG(τ). The triplet-

Figure 2. Validation of simulation method. The Brownian dynamics simulation of particle diffusion was run for 1 s using a 200 ns time step for
1000 molecules with a diffusion coefficient of 300µm2/s in a 10× 10 × 10 µm3 box (average concentration 1 particle/µm3; 1.7 nM). (A) Mean-
square displacement plot of particle positions. The fitted slope gives a diffusion coefficient of 298µm2/s. (B) Representative plot of the number of
particles,NV, in a 1× 1 × 3 µm3 cubic observation volume. (C) Corresponding plot for detected photons. Molecules were excited with a Gaussian
excitation profile ofwxy ) 0.354 µm, wz ) 1.061 µm (κ ) 3), and specific brightness 17 kHz/molecule. (D) Autocorrelation function,G(τ),
computed from F(t) from four separate simulations. The solid line is fittedG(τ) for a simple diffusion (eq 9) (see text for fitted parameters), with
fractional deviation (∆) shown in the lower panel. (E) Photon-count histogram,P(k;∆T), generated from the fluorescence trace with∆T ) 20 µs.
Data were fitted with theP(k;∆T) for the Poisson distribution (dotted curve) and the super-Poissonian model (theory; solid curve) (Chen et al.12).
(F) Effect of the excitation profile onG(τ). Trajectories were generated as above. The fluorescence module was modified to produce cubic, spherical,
and symmetric Gaussian (ωx ) ωy ) ωz) excitation profiles. Simulated data were fitted with eq 9, and the fractional deviation between fit and
simulation (∆) was plotted.

G(τ) )

G(0)(1 + τ/τD)-1(1 + τ/κ2τD)-1/2(1 + Th(e-τ/τjT - 1)
1 - Th ) (10)
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state parameters obtained from the fit (Th ) 0.17, 0.28, and 0.43
andτjt ) 3.6, 3.3, and 2.8µs, for specific brightnesses 1.8×
105, 3.7 × 105, and 7.0× 105, respectively) were in good
agreement with those calculated from the parameters used to
generate the simulation (Th ) 0.16, 0.27, and 0.40 andτjt ) 3.5,
3.4, and 2.9µs, respectively).

Figure 3C shows the effect of triplet-state kinetics on the
PCH. As expected, triplet-state kinetics lowered the most
probable count rate. Interestingly,P(k;∆T) for triplet-state
kinetics were fitted well by the “super-Poissonian” theory
applicable in the absence of triplet-state kinetics, albeit with
altered specific brightness and concentration, indicating the
inability to detect triplet-state phenomena by PCH analysis
alone.

Effects of Photobleaching onG(τ) and P(k;∆T). Photo-
bleaching was simulated by including a first-order kinetic
process that converts an excited molecule into a permanently
dark state (Figure 4A).G(τ) and P(k;∆T) were compared in
the absence of photobleaching and for different photobleaching
rates as given in Figures 4B and 4C. In the absence of
photobleaching,G(τ) was described by eq 9 with fittedG(0)
andτD (0.168 and 0.422 ms) in agreement with parameters used
in the simulation (0.169 and 0.419 ms). As the photobleaching
rate increased, simulatedG(τ) values were still described
reasonably well by eq 9, with deviations apparent at the highest
photobleaching rate (1µs). Photobleaching produced an increase
in apparentG(0) (0.296 and 0.428 forτbl ) 3 and 1 µs,
respectively) and decrease inτD (0.244 and 0.130µs). Quali-

tatively, the increase inG(0) with photobleaching arises from
the reduced steady-state fluorophore concentration in the
illuminated volume, and the decrease inτD arises from enhanced
apparent mobility as bleached fluorescent molecules disappear
from the excitation volume. Photobleaching can be taken into
account approximately by the inclusion of an additional
exponential term in the correlation function23,47

where GD(τ) is the autocorrelation function with no photo-
bleaching (eq 9),B is the average fraction of excited molecules
that photobleach, andτbl is the average photobleach time
constant. Figure 4C shows that this modified correlation function
describesG(τ) well for τbl ) 1 µs. Figure 4D shows the effect
of photobleaching onP(k;∆T). As expected, the count rate
decreased with photobleaching, from 104 kHz (no photobleach)
to 51.2 kHz (τbl ) 3 µs) to 25.4 kHz (τbl ) 1 µs). As was the
case for triplet-state kinetics (Figure 3C), theP(k;∆T) values
for photobleaching were fit well by the super-Poissonian theory
applicable in the absence of photobleaching, indicating the
inability to identify photobleaching by PCH analysis alone.

Figure 3. Simulations of intersystem crossing. (A) Kinetic scheme
for intersystem crossing. (B) SimulatedG(τ). Brownian dynamics
trajectories (1 s) generated for 192 spherical molecules with a diffusion
coefficient of 107µm2/s in a 4× 4 × 12 µm3 box (1 molecule/µm3;
1.7 nM) with a step time of 50 ns (total of 107 steps), withk12 ) k21 )
2.0 × 107 s-1, τis ) 0.3 µs-1, andτjt ) 5 µs. F(t) was generated using
a Gaussian excitation beam (wxy ) 0.354µm andwz ) 1.061µm) with
the indicated specific brightness (in kHz/molecule). The smooth curves
(which follow the simulated data very closely) are fits of eq 10 (see
text for fitted parameters). (C) Effects of intersystem crossing on
P(k;∆T) with ∆T ) 20 µs. Data were simulated as in part B with a
specific brightness of 370 kHz/molecule (in the absence of intersystem
crossing). Solid lines are fits of the super-Poissonian model with the
parameters: control (observed simulation values in parentheses),Nh )
2.06 (2.16),εj ) 5.07 (4.86); triplet state,Nh ) 2.01 (2.62),εj ) 3.41
(2.62).

Figure 4. Simulations of photobleaching. (A) Kinetic scheme for
photobleaching. (B) Effect of photobleaching onG(τ). Brownian
dynamics trajectories generated as in Figure 2.F(t) was generated using
a Gaussian excitation beam (wxy ) 0.354µm, wz ) 1.061µm) with
indicated photobleaching time constants. The specific brightness was
17 kHz/molecule (in the absence of photobleaching). Data were
simulated at a constant excitation light intensity. The solid lines are
fits of eq 9 (see text for values of fitted parameters) with fractional
deviation (∆) at τbl ) 1 µs shown in the lower panel. (C) Fit of eq 11
with parameters:G(0) ) 0.40, τD ) 0.34 ms,B ) 0.86, andτbl )
0.53 ms with fractional deviation (∆). (D) Effect of photobleaching on
P(k;∆T). Data were binned with∆T ) 20 µs. The solid lines are fits
to the super-Poissonian model (with observed simulation values in
parentheses): control,Nh ) 2.16 (2.0862),εj ) 0.9463 (0.98); 3µs
bleach,Nh ) 1.30 (1.19),εj ) 0.70 (0.76); 1µs bleach,Nh ) 0.99 (0.88),
εj ) 0.45 (0.51). (E) Effect of excitation light intensity onG(τ) for
calcein. The solid lines are fits of eq 9 to the data (starting at 10µs).
Fitted parameters:G(0) ) 0.082, 0.11, 0.23, 0.31 andτD ) 0.60, 0.63,
0.43, 0.22 ms for relative light intensities of 1, 2×, 6×, and 20×,
respectively.

G(τ) ) GD(τ)(1 + B(e-τ/τbl - 1)) (11)
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The predictions from the simulations of the effects of photo-
bleaching were tested experimentally by FCS measurements on
aqueous calcein solutions. RepresentativeG(τ) values shown
in Figure 4E indicate an increase inG(0) and reduction inτD

with increased excitation light intensity. The experimental data
are in qualitative agreement with the predictions of Figure 4B,
though the experimental data also show evidence for increased
triplet-state population with increased excitation intensity.

Two-Color Cross-Correlation Validation and Effects of
Beam Misalignment.The effects of dimer formation on auto-
and cross-correlationG(τ) in two-color FCS were simulated by
configuring a system consisting of equal numbers of two kinds
of particles, A and B, each separately excited and detected. A
specified fraction of A and B were bound permanently as A-B
rigid-rod dimers with a 50 nm bond length. Figure 5A shows
the cross-correlation function,GAB(τ), of A and B as a function
of the fraction held bound. As expected,GAB(0) increased with
fraction bound. Figure 5B shows thatGAB(0) increased linearly
with fraction bound, while the autocorrelation functions,GAA-
(0) andGBB(0), are not sensitive to binding, as expected.

The simulated effect of beam misalignment on FCS measure-
ments on a collection of rigid A-B dimers is shown in Figure
5C. For these simulations, identical Gaussian excitation/detection
profiles were used, and the centers of the two profiles were
offset. The offset in thex-direction was expressed as a fraction
of the standard deviation of the Gaussian profile. As expected,
GAB(0) decreased with greater offset. The inset to Figure 4C
shows an expansion of the lower curve, revealing a peak in

cross-correlation at 1µs when the beams are separated by 2.8
times the standard deviation. This peak in cross-correlation
occurs near the characteristic diffusion time of 1.6µs and
corresponds to the cross-correlation arising from diffusion of
the A-B dimer from one detection volume to the other. Figure
5D shows thatGAB(0) is relatively unaffected until the centers
of the excitation profiles are separated by more than 0.2 times
the standard deviation of the Gaussian excitation profile.

Effects of Binding onG(τ). Simulations of binding were done
for an ensemble of molecules in which there was a constant
probability that a molecule would stop in its trajectory (char-
acterized by time constantτon), and once stopped, a constant
probability to resume its trajectory (characterized by time
constantτoff). This system corresponds to binding of a fluoro-
phore to an immobile object with on and off rate constants 1/τon

and 1/τoff, respectively. Simulations forτon/τoff ) 1 are shown
in Figure 6A. Forτon ) τoff ) 50 µs, G(0) is only mildly
affected, but apparentτD increases. Similar data were obtained
for τon ) τoff ) 500 µs (not shown). As the on-off times
increase to 5000µs, G(0) decreases andτD increases. The
increase in apparentτD is related to slowed fluorophore diffusion
in the excitation volume because of binding; the reducedG(0)
with slow on-off rates arises from fluorophores that do not
escape the excitation beam over the course of the simulation,
acting as background fluorescence. In the limit of very slow
binding, bound fluorophores do not move whereas the free
fluorophores diffuse without binding. Sinceτon/τoff ) 1 and half
of the fluorophores are bound for the simulations in Figure 6A,
G(0) is reduced to half of its original value with no change in
τD.

Figure 5. Simulations of TCFCS. Brownian dynamics trajectories (1
s) generated for 192 spherical particles of type A and 192 spherical
particles of type B (each with a diffusion coefficient of 273µm2/s) in
a 4× 4 × 12 µm3 box using a step time of 100 ns for 107 steps.F(t)
generated using a Gaussian excitation beam (wxy ) 0.354µm andwz

) 1.061µm) and a specific brightness of 17 kHz/molecule. (A) Effect
of dimer formation on the cross-correlation function. Indicated fractions
of A and B were constrained as 50 nm rigid-rod A-B dimers. Solid
lines are a fit of eq 9. Fitted parameters:G(0) ) 0.055, 0.112, and
0.165 andτD ) 0.97, 0.97, and 0.83 ms for bound fractions 0.33, 0.66,
and 1.00, respectively. For unbound A and B,G(0) ) 0.163 andτD )
0.42 ms (data not shown). (B) Dependence ofG(0) on fraction bound.
The autocorrelation of the A molecules,GAA(0), is shown.GBB(0) (not
shown) was identical toGAA(0). (C) Effect of beam misalignment on
cross-correlation function. A and B were constrained as 50 nm rigid-
rod A-B dimers. Illumination and detection profiles for A and B were
displaced in thex-direction by indicated distances. The solid lines
represent a fit of eq 9 to the data. Fitted parameters:G(0) ) 0.158,
0.102, and 0.026 andτD ) 1.63, 1.38, and 5.96µs for offset∆x/σ )
0.0, 0.7, and 2.8, respectively.∆x is the offset of the centers of the
Gaussian excitation profiles, andσ is the standard deviation in the
x-direction. The inset shows the lower curve on an expandedy-scale.
(D) Effect of misalignment of the beams on auto- and cross-correlation
G(0).

Figure 6. Simulations of binding effects on FCS. Brownian dynamics
trajectories (1 s) generated for 192 spherical particles in a 4× 4 × 12
µm3 box using a time step of 100 ns for 107 steps.F(t) values were
generated using a Gaussian excitation beam (wxy ) 0.354µm andwz

) 1.061µm) and a specific brightness of 17 kHz/molecule. Trajectories
were modified by fixing the positions of particles for a given time, as
described in the text, characterized by association time,τon, and
dissociation time,τoff. To simulate slow binding, particles selected at
random were held fixed throughout the course of the simulation, and
no additional particles were allowed to bind. The fraction of particles
was held fixed atτoff/(τon + τoff) ) 0.5. (A) Effect of binding onG(τ)
with equally fluorescent bound and free particles. Solid lines are a fit
of eq 5, with fitted parameters:G(0) ) 0.170, 0.166, 0.136, and 0.085
andτD ) 0.45, 0.93, 1.52, and 0.52 ms for control,τon ) 50 µs, τon )
5000µs, and slow binding, respectively. (B) Same as in part A, except
that bound particles were nonfluorescent. The solid curves are a fit of
eq 9 with: G(0) ) 0.170 and 0.356 andτD ) 0.45 and 0.41 ms for
control and slow binding, respectively.
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Simulations were also done for the case where the bound
complex is nonfluorescent (Figure 6B). A second component
is seen in autocorrelation functions, corresponding to a flickering
of the fluorescence signal produced by binding-unbinding. As
the binding rate slows, the second component becomes more
prominent until, in the limit of infinitely slow binding-
unbinding, the system behaves as a collection of fluorophores
at half of the concentration of the control. The fittedG(0) (0.170
and 0.357) andτD (0.45 and 0.41 ms) for control and slow
binding support this interpretation. For the slow binding data
in Figure 6B, 50% of fluorophores are dark at any one time,
producing a 2-fold increase inG(0) but no change inτD.

Effects of Anomalous Diffusion and Crowding onG(τ).
Anomalous superdiffusion was modeled by inclusion of drift
in the Brownian dynamics simulation. Increasing drift (velocity
from 0 to 3 mm/s) produced greater upward curvature in the
MSD plot (Figure 7A), signifying superdiffusion. The corre-
spondingG(τ) curve shape differed significantly from that for
simple diffusion (Figure 7B) but fit reasonably well to the
semiempirical equation often used for FCS measurements of
anomalous diffusion50

Fitted R values were 1.5 and 2.5 for drifts of 1 and 3 mm/s,
respectively.

Anomalous subdiffusion was modeled by confining diffusion
to a box with reflecting boundaries. At box sizes comparable
to the size of the Gaussian excitation beam (width 0.7× 0.7×
2.1 µm3), MSD plots were downward-curved (Figure 7A),
signifying subdiffusion. MSD plots leveled out at long times
(data not shown). CorrespondingG(τ) values (Figure 7C) were
fitted using eq 12 withR values of 1.0 and 0.9 for box sizes of
2 × 2 × 6 and 1× 1 × 3 µm3, respectively.

As another possible cause of anomalous subdiffusion, mo-
lecular crowding, was modeled by simulating the diffusion of
small fluorophores (radius 0.73 nm) in a crowded environment
containing large nonfluorescent mobile spheres (radii of 150
nm). Intermolecular interactions were specified by the non-
bonding potentials shown in Figure 8A. At a crowder volume
fraction of 59%, there was an increase in apparentτD by 2.5-
fold without a change inG(0) (Figure 8B). The crowder volume
fraction was calculated by taking the effective crowder radius
as the distance at which the intermolecular potential increased
to kT. Others have used energies up to 2kT.51 With the larger
energy, the crowder radius decreases to 143 nm, and the volume
fraction decreases to 0.50.

The MSD plots were linear with a 2.5-fold decrease in slope
at 59% crowder volume fraction (data not shown). MSD plots
of the large crowder particles were also linear over the
simulation time course. TheG(τ) shape was described ad-
equately by a model without anomalous diffusion (eq 9) as
predicted from the linear MSD plot. Because of computation
time constraints, it was not practical to carry out crowding
simulations at more highly crowded volume fractions or using
smaller crowder sphere diameters where greater slowing of
diffusion is predicted.

Discussion

The purpose of this study was to develop a generalized
computational approach for simulation of correlation functions
and intensity histograms to investigate phenomena that are
expected to complicate the interpretation of FCS measurements
on biological systems. Such simulations enable analysis of
systems for which analytical expressions forG(τ) or P(k;∆T)
do not exist, such as non-Gaussian detection volumes, complex
photophysical phenomena, diffusion through complex, inho-
mogeneous, or anisotropic media, or nonequilibrium effects. The
simulations described here were applied to analyze the impact
on FCS of photobleaching, intersystem crossing, misaligned
focal volume elements in two-color FCS (TCFCS) experiments,
transient fluorophore binding to an immobile substrate, and
anomalous diffusion.

Simulation Method. Our simulation approach used three
distinct modules for computation of particle trajectories, simula-
tion of photon statistics to generateF(t), and computation of
correlation functions and histograms fromF(t). Trajectories were
computed as Brownian molecular dynamics trajectories to enable
the time and spatial resolution needed to simulate rapid
photophysical effects and interparticle interactions. In contrast,
in most FCS simulation methods40,48 trajectories are generated
by random jumps between lattice points on a grid. While lattice
methods are computationally efficient, intra- and intermolecular
interactions are difficult to simulate. Here, we generated
trajectories using the Langevin equation appropriate for a highly
damped system of independent particles. This approximation

Figure 7. Simulations of anomalous diffusion. (A) MSD plots for
simulated super- and subdiffusion. Brownian dynamics trajectories were
generated for 0.73µm particles at a concentration of 2 particles/µm3

for 100 ms using a 200 ns time step (average of 50 trajectories).
Superdiffusion was simulated by a constant velocity (V) in the
x-direction. Subdiffusion was simulated by confining the particle to a
rectangular box of indicated dimensions. (B) Superdiffusion.F(t) values
were generated with a Gaussian excitation profile ofwxy ) 0.354µm,
wz ) 1.061µm (κ ) 3), and a specific brightness of 17 kHz/molecule.
G(τ) as a function of velocity is shown along with deviations (∆)
between the fit of eq 9 (dashed line) or 11 (solid line) and the simulation.
Fitted parameters are given in Table 1. (C) Subdiffusion.F(t) and fits
were generated as in part B. Infinite box size refers to a 3× 3 × 9
µm3 box with periodic boundary conditions.

TABLE 1: Fitted Parameters for Simulations of Anomalous
Diffusion in Figure 7

simple diffusion anomalous diffusion

simulation G(0) τD (ms) G(0) τD (ms) R

superdiffusion, control 0.081 0.41 0.079 0.409 1.07
superdiffusion,V ) 1 mm/s 0.085 0.28 0.074 0.31 1.50
superdiffusion,V ) 3 mm/s 0.098 0.11 0.074 0.17 2.50
subdiffusion, control 0.080 0.39 0.077 0.39 1.08
subdiffusion, 3× 3 × 9 µm3 0.086 0.47 0.085 0.48 1.03
subdiffusion, 2× 2 × 6 µm3 0.070 0.30 0.068 0.30 1.07
subdiffusion, 1× 1 × 3 µm3 0.049 0.13 0.051 0.12 0.89

G(τ) ) G(0)(1 + (τ/τD)R)-1(1 + (τ/κ2τD)R)-1/2 (12)
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is valid for low concentrations of small particles over time scales
much greater than the characteristic relaxation time for particle
motion.34 The relaxation time is given by the ratio of particle
mass to the solvent friction coefficient. For small molecules in
aqueous solutions the relaxation time is on the order of
femtoseconds and thus much smaller than the simulated
millisecond diffusion times. The close agreement between the
simulated data and that predicted theoretically (Figure 2)
supports the approach used here to compute trajectories for FCS
simulation.

Decoupling the trajectory module from the fluorescence
module allows efficient simulation of various complex phe-
nomena such as the effects of conformation and mobility of
polymers on FCS experiments. Photophysical phenomena and
different illumination profiles are easily simulated without
recomputing trajectories. Such effects are not easily computed
using simulation approaches in which dynamics and fluores-
cence generation are directly coupled.42,49

Diffusion through structures having complex geometries, such
as cellular organelles, can produce significant deviations from
G(τ) compared to isotropic diffusion (eq 9). For example,
significant deviations from eq 9 are found for diffusion of small
molecules through dendritic tubules with diameters much smaller
than the focal volume,18 anomalous subdiffusion through cell
cytoplasm,50 and non-Gaussian excitation profiles.20 The simula-
tion approach described here is readily adapted to include these
phenomena. Restricted diffusion is simulated by computing
appropriate Brownian molecular dynamics trajectories and non-
Gaussian excitation profiles by modifying the fluorescence
statistics module.

The raw fluorescence trace data were stored in a PAT format.
As discussed by Eid et al.52 and Laurence et al.,53 the PAT is
the most efficient way to encode photon-count data when the
number of photon counts is much smaller than the number of
available time bins in the data acquisition hardware. We
developed an efficient approach to compute intensity auto- and
cross-correlation functions and photon-count histograms using
PAT information directly. StoringF(t) and calculatingG(τ) and
P(k;∆T) using the PAT format obviates the need to store and
carry out computations of time bins that have zero counts.

Effects of Photophysics onG(τ) and P(k;∆T). FCS experi-
ments at high excitation light intensities with photolabile
fluorophores can be complicated by triplet-state kinetics as well
as by photobleaching (Figures 3 and 4). These two phenomena
are often found concurrently: Excitation to higher energy levels
increases the probability of both intersystem crossing and
photobleaching. The effects can be simulated independently in
our method.

Analytical forms forG(τ)14 andP(k;∆T)48 have been devel-
oped for molecules that undergo intersystem crossing into the
triplet state. Simulations with triplet-state photophysics (Figure
3B) showed excellent agreement withG(τ) predicted from
theory. The histogram analysis in Figure 3C showed that
P(k;∆T) computed with triplet-state kinetics can be fit well by
the super-Poissonian theory neglecting photophysical effects.
Palo et al.48 propose that the effects of triplet-state trapping on
P(k;∆T) may be accounted for by using apparent specific
brightness and concentration values according to

where ∆T is the histogram bin time,κ is the singlet-triplet
transition rate,τ is the triplet lifetime, andΓtrip(∆T) andΓdiff-
(∆T) are correction factors for triplet events and diffusive
mixing, respectively, occurring within the time∆T. For triplet-
state dynamics

whereλ ) τ/∆T andf ) κτ. Using eq 14, however, leads to a
significant underestimation of the specific brightness and particle
concentration compared to the values from the simulation and
those obtained fittingP(k;∆T) to the histogram data (Figure 3C).
Significantly, this implies that the current theory described by
Palo et al.48 is insufficient for determining triplet-state param-
eters fromP(k;∆T).

Photobleaching effects become apparent onG(0) andτD (with
little change in the shape ofG(τ)) when the characteristic time
constant for photobleaching is as low as 1% of the diffusion
time (Figure 4B). The simulations of photobleaching (Figure
4) are qualitatively consistent with what is expected from
removal of fluorophores from the excitation volume. Ignoring
the effects of photobleaching onG(τ) can produce significant
underestimation of particle concentration and overestimation of
particle mobility. An important finding from our simulations is
that theP(k;∆T) profile shape is quite insensitive to photo-
bleaching dynamics, as was also found for triplet-state dynamics.
The main determinants ofP(k;∆T) are the steady-state fluores-
cence properties of the molecules, even if the time scales for
P(k;∆T) binning are comparable to the time scale of the kinetics.

There is no analytical expression for the fluorescence auto-
correlation as a function of photobleach time because the
probability of photobleaching depends in an unknown way on
the nonuniform excitation across the excitation volume. Eggeling
et al.23 and Dittrich and Schwille47 have developed an ap-
proximate expression forG(τ) (eq 11) assuming the excitation
probability is uniform across the excitation volume. Equation
11 describes the data well (Figure 4C), indicating that photo-
bleaching in FCS experiments can be thought of as a unimo-
lecular kinetic process independent of the diffusional motion
of the fluorophore through the excitation beam. According to

Figure 8. Simulations of crowding. (A) Nonbonding potentials used
in crowding simulations. The radius of the particles was defined
operationally as the distance from the center of the particle at which
the potential dropped tokT. (B) Effect of crowding onG(τ). Brownian
dynamics trajectories (100 ms) were generated for 81 spherical diffusing
particles (diffusion coefficient 95µm2/s, effective radius 0.45 nm) and
420 large crowding particles (diffusion coefficient 0.67µm2/s, effective
radius 300 nm) in a 3× 3 × 9 µm3 box for a volume exclusion of
59%. The solid lines represent a fit of eq 9 to the data. Fitted
parameters:G(0) ) 0.161 and 0.164 andτD ) 0.80 and 2.01 ms for
volume fractions 0% and 59%, respectively.

Nh app∝ capp(∆T) ) c
Γtrip(∆T)Γdiff(∆T)(1 + κτ)

εjapp) qapp(∆T) ) qΓtrip(∆T)Γdiff(∆T) (13)

Γtrip(∆T) ) {2λf(1 + f - λ(1 - exp[-(1 + f)/λ]))}/(1 + f)3

(14)
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this view, effects of photobleaching on FCS experiments become
apparent when the effective photobleaching time (τbl of eq 11)
becomes comparable to the characteristic time for diffusion
through the excitation beam (e.g.,τbl ) 0.53 ms andτD ) 0.34
ms for the conditions in Figure 4C).

Molecular Interactions. Two-color FCS has been used to
measure the concentration of bound fluorophores,54 which relies
on the fact thatG(0) andτD of the cross-correlation function
contain information only about bound fluorophores. As pre-
dicted, our simulations showed that at constant fluorophore
concentrationG(0) parallels the fraction of bound fluorophores
(Figures 5A and 5B). The fitted diffusion time for the cross-
correlation function (0.83-0.97 ms) was greater than that of
the monomer (0.42 ms), as expected for slower dimer diffusion.
G(0) for the cross-correlation function at 100% bound (0.165)
was similar to that for the autocorrelation function (0.163),
indicating that all fluorophores are detected. These simulations
validate the use of cross-correlation methods to measure
concentrations of bound fluorophores.

In a commonly used implementation of TCFCS, two laser
beams are used, with each laser beam exciting a single class of
fluorophores. It is generally advised that the two laser beams
be of equal intensity and superimposed ifG(τ) is to be analyzed
by simple diffusional models.55 Imperfect beam alignment was
modeled as an application of the TCFCS simulation. Our results
(Figure 4D) indicate that the beams may be displaced as much
as 20% of the width of the excitation beam without significant
effects onG(τ). However, an offset of several times the width
can lead to a peak in the cross-correlation (Figure 4C). Such a
peak inGAB(τ) is also seen for transient association of A and
B10 so that misregistration of the two excitation beams in TCFCS
could be wrongly interpreted as bimolecular kinetic phenomena.

Fluorophore binding can also changeG(τ) curve shape.56

Dynamic effects were simulated by stopping a fluorophore in
its trajectory for a randomly chosen time so as to produce first-
order kinetics. When binding occurs without a change in
quantum yield and on the time scale of diffusion through the
illumination volume (Figure 6A), significant effects onG(0)
andτD were found even though theG(τ) curve shape was well
described by simple diffusion (eq 9). TheG(τ) curve shape
differed from that predicted by simple diffusion when the
diffusion time was increased by 10-fold. When binding occurs
with a change in quantum yield (Figure 6B), there were
significant changes inG(τ) curve shape for all binding rates.
Thus, fluorophore binding to a slowly diffusing or immobile
object on a time scale of the diffusion time or faster may not
be detected from a curve-shape analysis ofG(τ) unless there is
a change in fluorescence quantum yield upon binding.10

Furthermore, immobile fluorophores are not detected, producing
an overestimate (Figure 6A) or underestimate (Figure 6B) in
fluorophore concentration.

Anomalous Diffusion and Molecular Crowding. In general
terms, anomalous diffusion can be defined as diffusion in which
the MSD of a particle is not linear with time. Another commonly
used definition of anomalous diffusion is that the MSD is
proportional totR, whereR is not equal to 1. In the analysis of
FCS data, the parameterR has been determined by fitting eq
12 to the data. The parameterR is often used as a semiempirical
measure of anomalous diffusion.50 The approach used here was
to investigate the effect of three “nonnormal” diffusive models
(normal diffusion plus drift, reflecting boundary conditions, and
crowding) on FCS data. The effects were investigated by fitting
eq 12 to the simulated data.

Anomalous diffusion has been reported for molecular diffu-
sion in crowded biological environments such as membranes
and cytoplasm.50,57Anomalous superdiffusion, characterized by
upward-curved MSD plots, can be produced by directed
movement by convective or motor-driven processes. Anomalous
subdiffusion, seen as downward-curved MSD plots, can be
produced by confined or restricted diffusion. Anomalous dif-
fusion in FCS analysis has been analyzed semiempirically using
eq 12, in which a parameterR is included. The parameterR
describes the power-law behavior of the MSD plot:r2 ≈ tR.
An R of unity signifies simple diffusion, withR < 1 indicating
subdiffusion andR > 1 superdiffusion.

Simulations of superdiffusion and subdiffusion in Figure 7
produced nonlinear MSD plots and alteredG(τ) curve shape.
Superdiffusion, modeled by convection, produced an upwardly
curved MSD plot (Figure 7A) as expected. Significant deviations
in G(τ) from simple diffusion were found (Figure 7B).G(0)
was unaffected by drift velocity, indicating the average number
of particles in the excitation beam was unaffected by drift
velocity. However, the apparent diffusion timeτD increased with
drift velocity as a consequence of the reduced time a particle
remains in the excitation volume. Notably,G(τ) values were
fitted reasonably well with eq 12 withR > 1, providing the
first direct validation for the use of eq 12 in FCS analysis of
anomalous diffusion.

Subdiffusion, modeled by confining particles to a rectangular
box with reflecting boundary conditions, produced downward-
curved MSD plots (Figure 7A). When the dimensions of the
box became comparable to those of the excitation volume, both
G(0) andτD decreased, with a small change inR. G(0) decreases
because of the apparent increase in particle concentration as
particles are unable to diffuse out of the beam.τD decreases
because collisions with the box walls keep the particles within
the excitation volume, leading to an apparent decrease in transit
time across the excitation volume. An important implication of
these simulations is that FCS analysis of solute diffusion in a
small confined compartments (such as an intracellular organelle)
could produce overestimations of solute diffusion and concen-
tration without significant change inG(τ) shape.

Molecular crowding, defined as the volume exclusion of
solvent by a crowder, can strongly slow solute diffusion and
potentially produce anomalous subdiffusion.27,46,58Calculation
of solute diffusion in crowded solutions using statistical
mechanical theories and comparison with experimental data
suggest that the solute and crowder can be modeled effectively
as hard spheres with the solvent modeled as a continuum.
Extensions to this model include attractive potentials58 and
Lennard-Jones and Coulomb interactions.59 Here, crowding was
simulated using Brownian dynamics with repulsive interactions
between crowder and solute (Figure 8). With large spheres at
59 vol % as the crowder, solute diffusion was slowed 2.5-fold
with G(τ) fitting well to a simple diffusion model (R ) 1). These
results are in agreement with experimental data showing
nonanomalous diffusion of the small solute Rhodamine G with
Ficoll-70 crowder concentrations of up to 60 wt %, producing
a 140-fold slowing of diffusion.46

Measurement of the diffusion of larger solutes with Ficoll-
70 as a crowding agent also shows nonanomalous diffusion.46,60

However, Weiss et al.50 found anomalous diffusion of large
dextrans (10-2000 kDa) and IgG when cell cytoplasm was used
as a crowding agent. This apparent discrepancy has not been
resolved. Because of computational time constraints, it was not
possible here to carry out the computationally intensive simula-
tions of crowding by large numbers of diffusing particles.
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In conclusion, we have reported a general method for
simulation of FCS data. The method was used to investigate
effects of beam geometry, photophysical processes, binding,
anomalous diffusion, and crowding. Our approach should prove
useful in the design and analysis of FCS studies on systems
with complex diffusive phenomena.
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